Conference Paper

Statistical selection of relevant subspace projections for outlier ranking

Karlsruhe Inst. of Technol. (KIT), Karlsruhe, Germany
DOI: 10.1109/ICDE.2011.5767916 Conference: Data Engineering (ICDE), 2011 IEEE 27th International Conference on
Source: DBLP

ABSTRACT Outlier mining is an important data analysis task to distinguish exceptional outliers from regular objects. For outlier mining in the full data space, there are well established methods which are successful in measuring the degree of deviation for outlier ranking. However, in recent applications traditional outlier mining approaches miss outliers as they are hidden in subspace projections. Especially, outlier ranking approaches measuring deviation on all available attributes miss outliers deviating from their local neighborhood only in subsets of the attributes. In this work, we propose a novel outlier ranking based on the objects deviation in a statistically selected set of relevant subspace projections. This ensures to find objects deviating in multiple relevant subspaces, while it excludes irrelevant projections showing no clear contrast between outliers and the residual objects. Thus, we tackle the general challenges of detecting outliers hidden in subspaces of the data. We provide a selection of subspaces with high contrast and propose a novel ranking based on an adaptive degree of deviation in arbitrary subspaces. In thorough experiments on real and synthetic data we show that our approach outperforms competing outlier ranking approaches by detecting outliers in arbitrary subspace projections.

0 Bookmarks
 · 
104 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ensembles for unsupervised outlier detection is an emerging topic that has been neglected for a surprisingly long time (although there are reasons why this is more difficult than supervised ensembles or even clustering ensembles). Aggarwal recently discussed algorithmic patterns of outlier detection ensembles, identified traces of the idea in the literature, and remarked on potential as well as unlikely avenues for future transfer of concepts from supervised ensembles. Complementary to his points, here we focus on the core ingredients for building an outlier ensemble, discuss the first steps taken in the literature, and identify challenges for future research.
    ACM SIGKDD Explorations Newsletter 03/2014; 15(1):11-22.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Analyzing exceptional objects is an important mining task. It includes the identification of outliers but also the description of outlier properties in contrast to regular objects. However, existing detection approaches miss to provide important descriptions that allow human understanding of outlier reasons. In this work we present OutRules, a framework for outlier descriptions that enable an easy understanding of multiple outlier reasons in different contexts. We introduce outlier rules as a novel outlier description model. A rule illustrates the deviation of an outlier in contrast to its context that is considered to be normal. Our framework highlights the practical use of outlier rules and provides the basis for future development of outlier description models.
    Proceedings of the 2012 European conference on Machine Learning and Knowledge Discovery in Databases - Volume Part II; 09/2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: There exists a variety of traditional outlier models, which measure the deviation of outliers with respect to the full attribute space. However, these techniques fail to detect outliers that deviate only w.r.t. an attribute subset. To address this problem, recent techniques focus on a selection of subspaces that allow: (1) A clear distinction between clustered objects and outliers; (2) a description of outlier reasons by the selected subspaces. However, depending on the outlier model used, different objects in different subspaces have the highest deviation. It is an open research issue to make subspace selection adaptive to the outlier score of each object and flexible w.r.t. the use of different outlier models. In this work we propose such a flexible and adaptive subspace selection scheme. Our generic processing allows instantiations with different outlier models. We utilize the differences of outlier scores in random subspaces to perform a combinatorial refinement of relevant subspaces. Our refinement allows an individual selection of subspaces for each outlier, which is tailored to the underlying outlier model. In the experiments we show the flexibility of our subspace search w.r.t. various outlier models such as distance-based, angle-based, and local-density-based outlier detection.
    Proceedings of the 22nd ACM international conference on Conference on information & knowledge management; 10/2013

Full-text (2 Sources)

View
298 Downloads
Available from
Jun 5, 2014