Digital signal processor implementation and performance evaluation of split capacitor, four-leg and three H-bridge-based three-phase four-wire shunt active filters

IET Power Electronics (Impact Factor: 1.52). 05/2011; DOI: 10.1049/iet-pel.2010.0198
Source: IEEE Xplore

ABSTRACT In this paper a comprehensive study on the three-phase four-wire (3P4W) shunt active power filter (APF) is carried out on the basis of three system configurations. These three two-level voltage source inverter topologies are compared for 3P4W shunt APF, namely, split capacitor (2C), four-leg (4L) and three single-phase H-bridges (3HB). The performance of all three topologies, under an unbalanced non-linear load condition, is evaluated with a detailed digital signal processor (DSP)-based experimental investigation. The steady-state as well as dynamic performance of APF is studied to compensate for current harmonics, reactive power, current unbalance and neutral current. The advantages and limitations offered by each of the topologies are also discussed in brief.

  • [Show abstract] [Hide abstract]
    ABSTRACT: An active power filter implemented with a four-leg voltage-source inverter using a predictive control scheme is presented. The use of a four-leg voltage-source inverter allows the compensation of current harmonic components, as well as unbalanced current generated by single-phase nonlinear loads. A detailed yet simple mathematical model of the active power filter, including the effect of the equivalent power system impedance, is derived and used to design the predictive control algorithm. The compensation performance of the proposed active power filter and the associated control scheme under steady state and transient operating conditions is demonstrated through simulations and experimental results.
    IEEE Transactions on Power Electronics 01/2014; 29(2):687-694. · 4.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An increased level of harmonics due to the proliferation of single-phase non-linear loads is raising serious concerns among utilities. Historically, passive filters have been proposed to reduce harmonics in MV utility applications. However, due to their limitations utilities are turning their attention to alternative solutions. At the same time, active filters are prohibitively expensive and are unlikely to become a realistic solution in the near future. In this paper a practical directional third harmonic hybrid active filter is proposed. A novel feature that adjusts the level of compensation provided by the filter based on the loading conditions of its passive components is introduced. Simulation and experimental results are presented. Issues related to utilizing existing VAr support capacitors for retrofit applications thereby achieving cost reduction and fail normal feature for increased reliability are addressed. Cost vs. performance curves are developed using factual utility harmonic data. Finally, the impact of a distributed filtering solution based on the proposed filter is shown using a simplified MV distribution system.
    Energy Conversion Congress and Exposition (ECCE), 2012 IEEE; 01/2012 · 1.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a comprehensive review on the unified power quality conditioner (UPQC) to enhance the electric power quality at distribution levels. This is intended to present a broad overview on the different possible UPQC system configurations for single-phase (two-wire) and three-phase (three-wire and four-wire) networks, different compensation approaches, and recent developments in the field. It is noticed that several researchers have used different names for the UPQC based on the unique function, task, application, or topology under consideration. Therefore, an acronymic list is developed and presented to highlight the distinguishing feature offered by a particular UPQC. In all 12 acronyms are listed, namely, UPQC-D, UPQC-DG, UPQC-I, UPQC-L, UPQC-MC, UPQC-MD, UPQC-ML, UPQC-P, UPQC-Q, UPQC-R, UPQC-S, and UPQC-VA$_{\rm min}$. More than 150 papers on the topic are rigorously studied and meticulously classified to form these acronyms and are discussed in the paper.
    IEEE Transactions on Power Electronics 01/2012; 27(5):2284-2297. · 4.08 Impact Factor