CogniServe: Heterogeneous Server Architecture for Large-Scale Recognition

IEEE Micro (Impact Factor: 2.39). 07/2011; DOI: 10.1109/MM.2011.37
Source: IEEE Xplore

ABSTRACT As smart mobile devices become pervasive, vendors are offering rich features supported by cloud-based servers to enhance the user experience. Such servers implement large-scale computing environments, where target data is compared to a massive preloaded database. CogniServe is a highly efficient recognition server for large-scale recognition that employs a heterogeneous architecture to provide low-power, high-throughput cores, along with application-specific accelerators.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The latest developments in mobile computing technology have increased the computing capabilities of smartphones in terms of storage capacity, features support such as multimodal connectivity, and support for customized user applications. Mobile devices are, however, still intrinsically limited by low bandwidth, computing power, and battery lifetime. Therefore, the computing power of computational clouds is tapped on demand basis for mitigating resources limitations in mobile devices. Mobile cloud computing (MCC) is believed to be able to leverage cloud application processing services for alleviating the computing limitations of smartphones. In MCC, application offloading is implemented as a significant software level solution for sharing the application processing load of smartphones. The challenging aspect of application offloading frameworks is the resources intensive mechanism of runtime profiling and partitioning of elastic mobile applications, which involves additional computing resources utilization on Smart Mobile Devices (SMDs). This paper investigates the overhead of runtime application partitioning on SMD by analyzing additional resources utilization on SMD in the mechanism of runtime application profiling and partitioning. We evaluate the mechanism of runtime application partitioning on SMDs in the SmartSim simulation environment and validate the overhead of runtime application profiling by running prototype application in the real mobile computing environment. Empirical results indicate that additional computing resources are utilized in runtime application profiling and partitioning. Hence, lightweight alternatives with optimal distributed deployment and management mechanism are mandatory for accessing application processing services of computational clouds.
    The Journal of Supercomputing 01/2013; · 0.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The latest developments in mobile computing technology have enabled intensive applications on the modern Smartphones. However, such applications are still constrained by limitations in processing potentials, storage capacity and battery lifetime of the Smart Mobile Devices (SMDs). Therefore, Mobile Cloud Computing (MCC) leverages the application processing services of computational clouds for mitigating resources limitations in SMDs. Currently, a number of computational offloading frameworks are proposed for MCC wherein the intensive components of the application are outsourced to computational clouds. Nevertheless, such frameworks focus on runtime partitioning of the application for computational offloading, which is time consuming and resources intensive. The resource constraint nature of SMDs require lightweight procedures for leveraging computational clouds. Therefore, this paper presents a lightweight framework which focuses on minimizing additional resources utilization in computational offloading for MCC. The framework employs features of centralized monitoring, high availability and on demand access services of computational clouds for computational offloading. As a result, the turnaround time and execution cost of the application are reduced. The framework is evaluated by testing prototype application in the real MCC environment. The lightweight nature of the proposed framework is validated by employing computational offloading for the proposed framework and the latest existing frameworks. Analysis shows that by employing the proposed framework for computational offloading, the size of data transmission is reduced by 91%, energy consumption cost is minimized by 81% and turnaround time of the application is decreased by 83.5% as compared to the existing offloading frameworks. Hence, the proposed framework minimizes additional resources utilization and therefore offers lightweight solution for computational offloading in MCC.
    PLoS ONE 08/2014; · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuromorphic vision algorithms are biologically inspired models that follow the processing that takes place in the primate visual cortex. Despite their efficiency and robustness, the complexity of these algorithms results in reduced performance when executed on general purpose processors. This paper proposes an application-specific system for accelerating a neuromorphic vision system for object recognition. The system is based on HMAX, a biologically-inspired model of the visual cortex. The neuromorphic accelerators are validated on a multi-FPGA system. Results show that the neuromorphic accelerators are 13.8× (2.6×) more power efficient when compared to CPU (GPU) implementation.
    Journal of Signal Processing Systems 02/2013; 70(2). · 0.55 Impact Factor

Full-text (4 Sources)

Available from
Jul 22, 2014