Article

Targeted Tissue Ablation With Nanosecond Pulses

Ethicon Endo-Surg., Cincinnati, OH, USA
IEEE Transactions on Biomedical Engineering (Impact Factor: 2.23). 09/2011; 58(8):2161 - 2167. DOI: 10.1109/TBME.2011.2113183
Source: IEEE Xplore

ABSTRACT In-vivo porcine studies on the effect of nanosecond high-voltage pulses on liver tissue have shown that cell death can be induced in well-defined tissue volumes without damaging collagen-predominant structures. Comparison of the experimental results with the results of a 3-D finite element model allowed us to determine the threshold electric field for cell death. For 30, 100-ns-long pulses this was found to be in the range from 12 to 15 kV/cm. Modeling of the temperature distribution in the tissue using Pennes' bioheat equation showed that the lethal effect of nanosecond pulses on cells is nonthermal. Muscle contractions, generally caused by high-voltage pulses, were significantly reduced for the 100-ns pulses compared to microsecond-long pulses. The results of these studies indicate that high-voltage nanosecond pulses reliably kill normal liver cells in vivo, and therefore, may be useful for liver tumor treatments.

0 Followers
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Strategies for treating liver cancer using radiation, chemotherapy combinations and tyrosine kinase inhibitors targeting specific mutations have provided longer survival times, yet multiple treatments are often needed and recurrences with new malignant phenotypes are not uncommon. New and innovative treatments are undoubtedly needed to successfully treat liver cancer. Over the last decade, nanosecond pulsed electric fields (nsPEFs) have shown promise in pre-clinical studies; however, these have been limited to treatment of skin cancers or xenographs in mice. In the present report, an orthotopic hepatocellular carcinoma (HCC) model is established in rats using N1-S1 HCC cells. Data demonstrate a response rate of 80-90% when 1000 pulses are delivered with 100ns durations, electric field strengths of 50kV/cm and repetition rates of 1Hz. N1-S1 tumours treated with nsPEFs expressed significant number of cells with active caspase-3 and caspase-9, but not caspase-8, indicating an intrinsic apoptosis mechanism(s) as well as caspase-independent mechanisms. Most remarkably, rats with successfully ablated tumours failed to re-grow tumours when challenged with a second injection of N1-S1 cells when implanted in the same or different liver lobe that harboured the original tumour. Given this protective effect, infiltration of immune cells and the presence of granzyme B expressing cells within days of treatment suggest the possibility of an anti-tumour adaptive immune response. In conclusion, NsPEFs not only eliminate N1-S1 HCC tumours, but also may induce an immuno-protective effect that defends animals against recurrences of the same cancer.
    European journal of cancer (Oxford, England: 1990) 07/2014; 50(15). DOI:10.1016/j.ejca.2014.07.006 · 4.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocellular carcinoma often evades effective therapy and recurrences are frequent. Recently, nanosecond pulsed electric field (nsPEF) ablation using pulse power technology has emerged as a local-regional, non-thermal, and non-drug therapy for skin cancers. In the studies reported here we use nsPEFs to ablate murine, rat and human HCCs in vitro and an ectopic murine Hepa 1-6 HCC in vivo. Using pulses with 60 or 300 ns and electric fields as high as 60 kV/cm, murine Hepa 1-6, rat N1S1 and human HepG2 HCC are readily eliminated with changes in caspase-3 activity. Interestingly caspase activities increase in the mouse and human model and decrease in the rat model as electric field strengths are increased. In vivo, while sham treated control mice survived an average of 15 days after injection and before humane euthanasia, Hepa 1-6 tumors were eliminated for longer than 50 days with 3 treatments using one hundred pulses with 100 ns at 55 kV/cm. Survival was 40% in mice treated with 30 ns pulses at 55 kV/cm. This study demonstrates that nsPEF ablation is not limited to effectively treating skin cancers and provides a rationale for treating orthotopic hepatocellular carcinoma in pre-clinical applications and ultimately in clinical trials.
    Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 08/2011; 2011:6861-5. DOI:10.1109/IEMBS.2011.6091692
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Therapeutic irreversible electroporation (IRE) is an emerging technology for the non-thermal ablation of tumors. The technique involves delivering a series of unipolar electric pulses to permanently destabilize the plasma membrane of cancer cells through an increase in transmembrane potential, which leads to the development of a tissue lesion. Clinically, IRE requires the administration of paralytic agents to prevent muscle contractions during treatment that are associated with the delivery of electric pulses. This study shows that by applying high-frequency, bipolar bursts, muscle contractions can be eliminated during IRE without compromising the non-thermal mechanism of cell death. A combination of analytical, numerical, and experimental techniques were performed to investigate high-frequency irreversible electroporation (H-FIRE). A theoretical model for determining transmembrane potential in response to arbitrary electric fields was used to identify optimal burst frequencies and amplitudes for in vivo treatments. A finite element model for predicting thermal damage based on the electric field distribution was used to design non-thermal protocols for in vivo experiments. H-FIRE was applied to the brain of rats, and muscle contractions were quantified via accelerometers placed at the cervicothoracic junction. MRI and histological evaluation was performed post-operatively to assess ablation. No visual or tactile evidence of muscle contraction was seen during H-FIRE at 250 kHz or 500 kHz, while all IRE protocols resulted in detectable muscle contractions at the cervicothoracic junction. H-FIRE produced ablative lesions in brain tissue that were characteristic in cellular morphology of non-thermal IRE treatments. Specifically, there was complete uniformity of tissue death within targeted areas, and a sharp transition zone was present between lesioned and normal brain. H-FIRE is a feasible technique for non-thermal tissue ablation that eliminates muscle contractions seen in IRE treatments performed with unipolar electric pulses. Therefore, it has the potential to be performed clinically without the administration of paralytic agents.
    BioMedical Engineering OnLine 11/2011; 10:102. DOI:10.1186/1475-925X-10-102 · 1.75 Impact Factor