Article

On Combining Shortest-Path and Back-Pressure Routing Over Multihop Wireless Networks

Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA, USA
IEEE/ACM Transactions on Networking (Impact Factor: 2.01). 07/2011; DOI: 10.1109/TNET.2010.2094204
Source: DBLP

ABSTRACT Back-pressure-type algorithms based on the algorithm by Tassiulas and Ephremides have recently received much attention for jointly routing and scheduling over multihop wireless networks. However, this approach has a significant weakness in routing because the traditional back-pressure algorithm explores and exploits all feasible paths between each source and destination. While this extensive exploration is essential in order to maintain stability when the network is heavily loaded, under light or moderate loads, packets may be sent over unnecessarily long routes, and the algorithm could be very inefficient in terms of end-to-end delay and routing convergence times. This paper proposes a new routing/scheduling back-pressure algorithm that not only guarantees network stability (throughput optimality), but also adaptively selects a set of optimal routes based on shortest-path information in order to minimize average path lengths between each source and destination pair. Our results indicate that under the traditional back-pressure algorithm, the end-to-end packet delay first decreases and then increases as a function of the network load (arrival rate). This surprising low-load behavior is explained due to the fact that the traditional back-pressure algorithm exploits all paths (including very long ones) even when the traffic load is light. On the other-hand, the proposed algorithm adaptively selects a set of routes according to the traffic load so that long paths are used only when necessary, thus resulting in much smaller end-to-end packet delays as compared to the traditional back-pressure algorithm .

0 Bookmarks
 · 
132 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Motivated by the regular service requirements of video applications for improving Quality-of-Experience (QoE) of users, we consider the design of scheduling strategies in multi-hop wireless networks that not only maximize system throughput but also provide regular inter-service times for all links. Since the service regularity of links is related to the higher-order statistics of the arrival process and the policy operation, it is highly challenging to characterize and analyze directly. We overcome this obstacle by introducing a new quantity, namely the time-since-last-service (TSLS), which tracks the time since the last service. By combining it with the queue-length in the weight, we propose a novel maximum-weight type scheduling policy, called Regular Service Guarantee (RSG) Algorithm. The unique evolution of the TSLS counter poses significant challenges for the analysis of the RSG Algorithm. To tackle these challenges, we first propose a novel Lyapunov function to show the throughput optimality of the RSG Algorithm. Then, we prove that the RSG Algorithm can provide service regularity guarantees by using the Lyapunov-drift based analysis of the steady-state behavior of the stochastic processes. In particular, our algorithm can achieve a degree of service regularity within a factor of a fundamental lower bound we derive. This factor is a function of the system statistics and design parameters and can be as low as two in some special networks. Our results, both analytical and numerical, exhibit significant service regularity improvements over the traditional throughput-optimal policies, which reveals the importance of incorporating the metric of time-since-last-service into the scheduling policy for providing regulated service.
    05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Address dynamic configuration in the IP-based network is often accomplished by the dynamic host configuration protocol (DHCP), however, the mobility of mobile ad hoc network (MANET) nodes always involve unpredictable topology changes. Previous works on IP address in ad hoc network assumes that all the address is configured statically by the centralized administration. However, as with the rapid development of wireless network, there are not enough IP addresses available to identify each individual user. DHCP can not be utilized in a mobile ad hoc network due to the lack of any centralized DHCP server in distributed dynamic environment. There are also two typical enhanced solutions for dynamic host configurations, i.e., MANETConf and Quorum approaches. Consider the information of geographical position that from a GPS, we proposed a simplified configuration protocol to reduce controlling overhead and the associate traffic loss during handover period. Extensive environments are implemented comparing the performance of the three approaches. The results shown that the GPS based configuration is more efficient than the traditional methods.
    Wireless Communications, Networking and Mobile Computing (WiCOM), 2012 8th International Conference on; 01/2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Packet scheduling/routing in wireless ad hoc networks is a fundamental problem for ad hoc networking. Backpressure routing is a solid and throughput optimal policy for such networks, but suffers from increased delays. In this article, we present two holistic approaches to improve upon the delay problems of backpressure - type algorithms. We develop two scheduling algorithms, namely Voting backpressure and Layered backpressure routing, which are throughput optimal. We experimentally compare the proposed algorithms against state-of-the-art delay-aware backpressure algorithms, which provide optimal throughput, for different payloads and network topologies, for both static and mobile networks. The experimental evaluation of the proposed delay reduction algorithms attest their superiority in terms of QoS, robustness, low computational complexity and simplicity.
    ICST Transactions on Mobile Communications and Applications. 09/2014; 14(1):1-16.

Full-text (2 Sources)

Download
1 Download
Available from