Conference Paper

Extending the capabilities of the GRASP and CAESAR software to analyze and optimize active beamforming array feeds for reflector systems

Netherlands Inst. for Radio Astron. (ASTRON), Dwingeloo, Netherlands
DOI: 10.1109/ICEAA.2010.5652962 Conference: Electromagnetics in Advanced Applications (ICEAA), 2010 International Conference on
Source: IEEE Xplore

ABSTRACT This paper describes a numerical approach for the analysis of a reflector antenna system which is fed by a Phased Array Feed. This approach takes mutual interaction effects into account between the antenna array and the low noise amplifiers in the evaluation of the system sensitivity and optimization of the beamformer weights, and can be used when several signal and noise sources are present on the sky, ground, and inside the system itself. The described methodology has been applied to a practical PAF (comprising 144 tapered slot antennas operating from 1 to 1.75 GHz) which is installed at a 25-m reflector antenna. Comparison of numerical and experimental results shows a good agreement.

0 Bookmarks
 · 
62 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: APERTIF (APERture Tile In Focus) is a Phased Array Feed (PAF) system that is being developed for the Westerbork Synthesis Radio Telescope (WSRT) to increase its survey speed with a factor 20. This paper presents an overview of APERTIF and measurement results that demonstrate the unique capabilities of PAFs in practice: Wide field of view (scan range), low system temperature, excellent illumination efficiency, synthesis imaging and a significant reduction of the reflector feed interaction.
    General Assembly and Scientific Symposium, 2011 XXXth URSI; 09/2011
  • [Show abstract] [Hide abstract]
    ABSTRACT: Present day synthesis radio telescopes have limited survey capabilities because of field of view restrictions. A novel method to form multiple beams on the sky is to employ a phased array feed (PAF). In telescopes with small f/D ratios, it is the only way to form closely packed beams on the sky. An additional advantage of this technique is that a PAF allows optimizing the secondary beam in terms of sensitivity, sidelobes and polarization characteristics. APERTIF (“APERture Tile In Focus”) is a PAF system that is being developed for the Westerbork Synthesis Radio Telescope (WSRT) to increase its survey speed with a factor 20. This paper presents a system overview of APERTIF and measurement results that demonstrate the unique capabilities of PAFs in practice: Wide field of view (scan range), low system temperature, excellent illumination efficiency, synthesis imaging and a significant reduction of the reflector - feed interaction.
    Phased Array Systems and Technology (ARRAY), 2010 IEEE International Symposium on; 11/2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An optimal beamforming strategy is proposed for performing large-field surveys with dual-polarized phased-array-fed reflector antennas. This strategy uses signal-processing algorithms that maximize the beam sensitivity and the continuity of a field of view (FOV) that is formed by multiple closely overlapping beams. A mathematical framework and a newly developed numerical approach are described to analyze and optimize a phased array feed (PAF) system. The modeling approach has been applied to an experimental PAF system (APERTIF prototype) that is installed on the Westerbork Synthesis Radio Telescope. The resulting beam shapes, sensitivity, and polarization diversity characteristics (such as the beam orthogonality and the intrinsic cross-polarization ratio) are examined over a large FOV and frequency bandwidth. We consider weighting schemes to achieve a conjugate-field matched situation (max. received power), maximum signal-to-noise ratio (SNR), and a reduced SNR scenario but with constraints on the beam shape. The latter improves the rotational symmetry of the beam and reduces the sensitivity ripple, at a modest maximum sensitivity penalty. The obtained numerical results demonstrate a very good agreement with the measurements performed at the telescope.
    IEEE Transactions on Antennas and Propagation 07/2011; · 2.33 Impact Factor