Conference Paper

Robust reconstruction of arbitrarily deformed bokeh from ordinary multiple differently focused images

Nat. Inst. of Inf., Res. Organ. of Inf. & Syst., Tokyo, Japan
DOI: 10.1109/ICIP.2010.5650900 Conference: Image Processing (ICIP), 2010 17th IEEE International Conference on
Source: IEEE Xplore

ABSTRACT This paper deals with a method of generating seriously deformed bokeh on reconstructed images from ordinary multiple differently focused images including just simple bokeh such as Gaussian blurs. We previously proposed scene re-focusing with various iris shapes by applying a three-dimensional filter to the multi-focus images. However, actually the proposed method implicitly assumed that the feature of the iris can be expressed mathematically and it has some symmetry like a horizontally open iris. In this paper, at first, the captured multi-focus images are robustly decomposed into components, each of which goes through its own corresponding pin-hole on the lens, by using dimension reduction and a two-dimensional filter. Then, based on the appropriate composition of the components, reconstruction of arbitrarily deformed bokeh introduced by any user-defined iris is achieved. By some experiments, we show that our novel method can generate even seriously deformed bokeh that does not have simple symmetry.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Scene refocusing beyond extended depth of field for users to observe objects effectively is aimed by researchers in computational photography, microscopic imaging, and so on. Ordinary all-in-focus image reconstruction from a sequence of multi-focus images achieves extended depth of field, where reconstructed images would be captured through a pinhole in the center on the lens. In this paper, we propose a novel method for reconstructing all-in-focus images through shifted pinholes on the lens based on 3D frequency analysis of multi-focus images. Such shifted pinhole images are obtained by a linear combination of multi-focus images with scene-independent 2D filters in the frequency domain. The proposed method enables us to efficiently synthesize dense 4D light field on the lens plane for image-based rendering, especially, robust scene refocusing with arbitrary bokeh. Our novel method using simple linear filters achieves not only reconstruction of all-in-focus images even for shifted pinholes more robustly than the conventional methods depending on scene/focus estimation, but also scene refocusing without suffering from limitation of resolution in comparison with recent approaches using special devices such as lens arrays in computational photography.
    IEEE Transactions on Image Processing 11/2013; 22(11):4407-21. · 3.11 Impact Factor