Conference Paper

Prototype design and realization of an innovative energy efficient transfemoral prosthesis

Fac. of Electr. Eng., Math. & Comput. Sci., Univ. of Twente, Enschede, Netherlands
DOI: 10.1109/BIOROB.2010.5626778 Conference: Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS International Conference on
Source: OAI

ABSTRACT In this paper, we present the prototype realization of the conceptual design of a fully-passive transfemoral prosthesis. The working principle has been inspired by the power flow in human gait so to achieve an energy efficient device. The main goal of this paper is to validate the concept by implementing in a real prototype. The prototype, in scale 1 : 2 with respect to the average dimensions of an adult human, is based on two storage elements, which are responsible for the energetic coupling between the knee and ankle joints during the swing phase and for the energy storage during the stance phase. The design parameters of the prototype are determined according to the human body and the energetic characteristics of the gait. The construction of the prototype is explained in details together with a test setup that has been built to evaluate the prototype.


Available from: S.M. Behrens, May 10, 2015
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most modern intelligent knee prosthesis use dampers to modulate dynamic behavior and prevent excessive knee flexion, but they dissipate energy and do not assist in knee extension. Energy efficient variable stiffness control (VSA) can reduce the energy consumption yet effectively modulate the dynamic behavior and use stored energy during flexion to assist in subsequent extension.A principle design of energy efficient VSA in a prosthetic knee is proposed and analyzed for the specific case of rejection of a disturbed stance phase. The concept is based on the principle that the output stiffness of a spring can be changed without changing the energy stored in the elastic elements of the spring. The usability of this concept to control a prosthetic knee is evaluated using a model.Part of the stance phase of the human leg was modeled by a double pendulum. Specifically the rejection of a common disturbance of transfemoral prosthetic gait, an unlocked knee at heel strike, was evaluated. The ranges of spring stiffnesses were determined such that the angular characteristics of a normal stance phase were preserved, but disturbances could also be rejected.The simulations predicted that energy efficient VSA can be useful for the control of prosthetic knees.
    Medical Engineering & Physics 06/2013; 35(6):838-845. DOI:10.1016/j.medengphy.2012.08.016 · 1.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to develop strategies to control them in concert with the intentions of the user. This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic (P/O) devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user's sensory-motor control system. This review underscores the practical challenges and opportunities associated with P/O control, which can be used to accelerate future developments in this field. Furthermore, this work provides a classification scheme for the comparison of the various control strategies. As a novel contribution, a general framework for the control of portable gait-assistance devices is proposed. This framework accounts for the physical and informatic interactions between the controller, the user, the environment, and the mechanical device itself. Such a treatment of P/Os -- not as independent devices, but as actors within an ecosystem -- is suggested to be necessary to structure the next generation of intelligent and multifunctional controllers. Each element of the proposed framework is discussed with respect to the role that it plays in the assistance of locomotion, along with how its states can be sensed as inputs to the controller. The reviewed controllers are shown to fit within different levels of a hierarchical scheme, which loosely resembles the structure and functionality of the nominal human central nervous system (CNS). Active and passive safety mechanisms are considered to be central aspects underlying all of P/O design and control, and are shown to be critical for regulatory approval of such devices for real-world use. The works discussed herein provide evidence that, while we are getting ever closer, significant challenges still exist for the development of controllers for portable powered P/O devices that can seamlessly integrate with the user's neuromusculoskeletal system and are practical for use in locomotive ADL.
    Journal of NeuroEngineering and Rehabilitation 01/2015; 12:1. DOI:10.1186/1743-0003-12-1 · 2.62 Impact Factor
  • Source