Conference Paper

System approach for multi-purpose representations of traffic scene elements

Honda Res. Inst. Eur. GmbH, Offenbach, Germany
DOI: 10.1109/ITSC.2010.5625234 Conference: Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on
Source: IEEE Xplore

ABSTRACT A major step towards intelligent vehicles lies in the acquisition of an environmental representation of sufficient generality to serve as the basis for a multitude of different assistance-relevant tasks. This acquisition process must reliably cope with the variety of environmental changes inherent to traffic environments. As a step towards this goal, we present our most recent integrated system performing object detection in challenging environments (e.g., inner-city or heavy rain). The system integrates unspecific and vehicle-specific methods for the detection of traffic scene elements, thus creating multiple object hypotheses. Each detection method is modulated by optimized models of typical scene context features which are used to enhance and suppress hypotheses. A multi-object tracking and fusion process is applied to make the produced hypotheses spatially and temporally coherent. In extensive evaluations we show that the presented system successfully analyzes scene elements under diverse conditions, including challenging weather and changing scenarios. We demonstrate that the used generic hypothesis representations allow successful application to a variety of tasks including object detection, movement estimation, and risk assessment by time-to-contact evaluation.

0 Bookmarks
 · 
78 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper proposes a novel method for multivehicle detection and tracking using a vehicle-mounted monocular camera. In the proposed method, the features of vehicles are learned as a deformable object model through the combination of a latent support vector machine (LSVM) and histograms of oriented gradients (HOGs). The detection algorithm combines both global and local features of the vehicle as a deformable object model. Detected vehicles are tracked through a particle filter, which estimates the particles' likelihood by using a detection scores map and template compatibility for both root and parts of the vehicle while considering the deformation cost caused by the movement of vehicle parts. Tracking likelihoods are iteratively used as a priori probability to generate vehicle hypothesis regions and update the detection threshold to reduce false negatives of the algorithm presented before. Extensive experiments in urban scenarios showed that the proposed method can achieve an average vehicle detection rate of 97% and an average vehicle-tracking rate of 86% with a false positive rate of less than 0.26%.
    IEEE Transactions on Intelligent Transportation Systems 01/2012; 13(2):748-758. · 3.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper proposes an embedded real time method for detecting and tracking of multiobjects including vehicles, pedestrians, motorbikes and bicycles in urban environment. The features of different objects are learned as a deformable object model through the combination of a latent support vector machine (LSVM) and histograms of oriented gradients (HOG). Laser depth data have been used as a priori to generate objects hypothesis regions and estimate HOG feature pyramid level to reduce the detection time of previously presented algorithm. Detected objects are tracked through a particle filter which fuses the observations from laser map and sequential images. We use the accurate laser data for state predication and use image HOG information for likelihood calculation. The likelihood finds the maximum HOG feature compatibility for both root and parts of the tracked objects to increase tracking accuracy for deformable objects such as pedestrians in crowded scenes. Extensive experiments with urban scenarios showed that the proposed method can improve the detection and tracking in urban environment.
    01/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this contribution, we explore the possibilities of learning in large-scale, multimodal processing systems operating under real-world conditions. Using an instance of a large-scale object detection system for complex traffic scenes, we demonstrate that there is a great deal of very robust correlations between high-level processing results quantities, and that such correlations can be autonomously detected and exploited to improve performance. We formulate requirements for performing system-level learning (online operation, scalability to high-dimensional inputs, data mining ability, generality and simplicity) and present a suitable neural learning strategy. We apply this method to infer the identity of objects from multimodal object properties (“context”) computed within the correlated system and demonstrate strong performance improvements as well as significant generalization. Finally, we compare our approach to state-of-the-art learning methods, Locally Weighted Projection Regression (LWPR) and Multilayer Perceptron (MLP), and discuss the results in terms of the requirements for system-level learning.
    Artificial Neural Networks - ICANN 2010 - 20th International Conference, Thessaloniki, Greece, September 15-18, 2010, Proceedings, Part III; 01/2010

Full-text (2 Sources)

Download
50 Downloads
Available from
May 16, 2014