Article

Sonic gradient index lens for aqueous applications

Acoustics Division, Naval Research Laboratory, Washington, DC 20375, USA
Applied Physics Letters (Impact Factor: 3.52). 10/2010; DOI: 10.1063/1.3489373
Source: IEEE Xplore

ABSTRACT We study the acoustic scattering properties of a phononic crystal designed to behave as a gradient index lens in water, both experimentally and theoretically. The gradient index lens is designed using a square lattice of stainless-steel cylinders based on a multiple scattering approach in the homogenization limit. We experimentally demonstrate that the lens follows the graded index equations derived for optics by mapping the pressure intensity generated from a spherical source at 20 kHz. We find good agreement between the experimental result and theoretical modeling based on multiple scattering theory.

0 Bookmarks
 · 
118 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gradient index media, which are designed by varying local element properties in given geometry, have been utilized to manipulate acoustic waves for a variety of devices. This study presents a cylindrical, two-dimensional acoustic "black hole" design that functions as an omnidirectional absorber for underwater applications. The design features a metamaterial shell that focuses acoustic energy into the shell's core. Multiple scattering theory was used to design layers of rubber cylinders with varying filling fractions to produce a linearly graded sound speed profile through the structure. Measured pressure intensity agreed with predicted results over a range of frequencies within the homogenization limit.
    01/2014; 104(7).
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the design of quasi-two-dimensional artificial structures that acoustically behave as positive, single negative, double negative or density-near-zero metamaterials. The scattering units consist of a cavity drilled in one surface of a 2D waveguide and they have an inner structure whose geometrical parameters can be selected in order to obtain the desired dynamical behavior. Finally, we report the practical realization of two samples as well as their experimental characterization showing metamaterial features.
    01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sonic crystals can be used as acoustic lenses in certain frequencies and the design of such systems by creating vacancies and using genetic algorithms has been proven to be an effective method. So far, rigid cylinders have been used to create such acoustic lens designs. On the other hand, it has been proven that Helmholtz resonators can be used to construct acoustic lenses with higher refraction index as compared to rigid cylinders, especially in low frequencies by utilizing their local resonances. In this paper, these two concepts are combined to design acoustic lenses that are based on Helmholtz resonators. The Multi-Level Wave Based Method is used as the prediction method. The benefits of the method in the context of design procedure are demonstrated. In addition, symmetric boundary conditions are derived for more efficient calculations. The acoustic lens designs that use Helmholtz resonators are compared with the acoustic lens designs that use rigid cylinders. It is shown that using Helmholtz resonator based sonic crystals leads to better acoustic lens designs, especially at the low frequencies where the local resonances are pronounced.
    Journal of Sound and Vibration 07/2014; 333(15):3367–3381. · 1.61 Impact Factor

Full-text (3 Sources)

Download
101 Downloads
Available from
May 21, 2014