Conference Paper

CAD-based off-line robot programming

Dept. of Mech. Eng. (CEMUC), Univ. of Coimbra, Coimbra, Portugal
DOI: 10.1109/RAMECH.2010.5513141 In proceeding of: Robotics Automation and Mechatronics (RAM), 2010 IEEE Conference on
Source: IEEE Xplore

ABSTRACT Traditional industrial robot programming, using the robot teach pendant, is a tedious and time-consuming task that requires technical expertise. Hence, new and more intuitive ways for people to interact with robots are required to make robot programming easier. The goal is to develop methodologies that help users to program a robot in an intuitive way, with a high-level of abstraction from the robot language. In this paper we present a CAD-based system to program a robot from a 3D CAD environment, allowing users with basic CAD skills to generate robot programs off-line, without stop robot production. This system works as a human-robot interface (HRI) where, through a relatively low cost and commercially available CAD package, the user is able to generate robot programs. The methods used to extract information from the CAD and techniques to treat/convert it into robot commands are presented. The effectiveness of the proposed method is proved through various experiments. The results showed that the system is easy to use and within minutes an untrained user can set up the system and generate a robot program for a specific task. Finally, the time spent in the robot programming task is compared with the time taken to perform the same task but using the robot teach pendant as interface.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper focuses on intuitive and direct off-line robot programming from a CAD drawing running on a common 3-D CAD package. It explores the most suitable way to represent robot motion in a CAD drawing, how to automatically extract such motion data from the drawing, make the mapping of data from the virtual (CAD model) to the real environment and the process of automatic generation of robot paths/programs. In summary, this study aims to present a novel CAD-based robot programming system accessible to anyone with basic knowledge of CAD and robotics. Experiments on different manipulation tasks show the effectiveness and versatility of the proposed approach.
    Robotics and Autonomous Systems 01/2013; 61(8):896 - 910. · 1.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, an adaptive and low-cost robotic coating platform for small production series is presented. This new platform presents a flexible architecture that enables fast/automatic system adaptive behaviour without human intervention. The concept is based on contactless technology, using artificial vision and laser scanning to identify and characterize different workpieces travelling on a conveyor. Using laser triangulation, the workpieces are virtually reconstructed through a simplified cloud of three-dimensional (3D) points. From those reconstructed models, several algorithms are implemented to extract information about workpieces profile (pattern recognition), size, boundary and pose. Such information is then used to on-line adjust the “base” robot programmes. These robot programmes are off-line generated from a 3D computer-aided design model of each different workpiece profile. Finally, the robotic manipulator executes the coating process after its “base” programmes have been adjusted. This is a low-cost and fully autonomous system that allows adapting the robot’s behaviour to different manufacturing situations. It means that the robot is ready to work over any piece at any time, and thus, small production series can be reduced to as much as a one-object series. No skilled workers and large setup times are needed to operate it. Experimental results showed that this solution proved to be efficient and can be applied not only for spray coating purposes but also for many other industrial processes (automatic manipulation, pick-and-place, inspection, etc.).
    International Journal of Advanced Manufacturing Technology 09/2013; · 1.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a method for robot self-recognition and self-adaptation through the analysis of the contact between the robot end effector and its surrounding environment. Often, in off-line robot programming, the idealized robotic environment (the virtual one) does not reflect accurately the real one. In this situation, we are in the presence of a partially unknown environment (PUE). Thus, robotic systems must have some degree of autonomy to overcome this situation, especially when contact exists. The proposed force/motion control system has an external control loop based on forces and torques exerted on the robot end effector and an internal control loop based on robot motion. The external control loop is tested with an optimal proportional integrative (PI) and a fuzzy-PI controller. The system performance is validated with real-world experiments involving contact in PUEs.
    International Journal of Advanced Manufacturing Technology 01/2013; 68(1-4):435-441. · 1.78 Impact Factor

Full-text (2 Sources)

Available from
Jun 6, 2014