Conference Paper

Protograph-Based LDPC Convolutional Codes for Correlated Erasure Channels

Univ. of California San Diego, La Jolla, CA, USA
DOI: 10.1109/ICC.2010.5502364 Conference: Communications (ICC), 2010 IEEE International Conference on
Source: IEEE Xplore

ABSTRACT We consider terminated LDPC convolutional codes (LDPC-CC) constructed from photographs and explore the performance of these codes on correlated erasure channels including a single-burst channel (SBC) and Gilbert-Elliott channel (GEC). We consider code performance with a latency-constrained message passing decoder and the belief propagation decoder. We give theoretical bounds on the code efficiency over the SBC and describe a construction that achieves this bound.We show that the designed codes with belief propagation (BP) decoding perform as well as the regular LDPC-CCs presented in the literature on the binary erasure channel (BEC) and the GEC, while achieving significant gains on the SBC. In the case of windowed decoding, our codes perform much better than the best known regular LDPC-CCs over the BEC and the GEC, with very low decoding latencies.

Download full-text


Available from: Marco Papaleo, Jun 17, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Low implementation complexity, low-delay, and close-to-optimal performance of spatially-coupled LDPC codes over a wide variety of channels make them a very good candidate for upcoming wireless communication standards. However, due to the nature of the sliding window decoding architecture that is used to decode these codes, the associated error performance is considerably degraded over channels with memory, such as the burst erasure channel. In this case, using a block interleaver to break up the effects of the channel memory is not a viable option, since a block interleaver introduces a large amount of delay to the communication system and therefore takes back many of the advantages of using a sliding window decoder. In this paper, a reduced-delay communication system employing a convolutional interleaver is proposed. This scheme benefits from the inherent convolutional nature of the spatially-coupled codes and matches their structure with a low-delay convolutional interleaver. Thus, the resulting communication system exhibits very low overall delay. The performance of the proposed communication system is analyzed using the density evolution technique. Specifically, single-memory (minimum decoding delay), asymptotically (3,6)-regular spatially-coupled LDPC code ensembles are considered in the presence of burst erasures and the performance improvement of using a convolutional interleaver is demonstrated as a function of added interleaving delay in terms of iterative decoding thresholds.
    2012 International Symposium on Signals, Systems and Electronics (ISSSE); 10/2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spatially coupled codes have been of interest recently owing to their superior performance over memoryless binary-input channels. The performance is good both asymptotically, since the belief propagation thresholds approach the Shannon limit, as well as for finite lengths, since degree-2 variable nodes that result in high error floors can be completely avoided. However, to realize the promised good performance, one needs large blocklengths. This in turn implies a large latency and decoding complexity. For the memoryless binary erasure channel, we consider the decoding of spatially coupled codes through a windowed decoder that aims to retain many of the attractive features of belief propagation, while trying to reduce complexity further. We characterize the performance of this scheme by defining thresholds on channel erasure rates that guarantee a target erasure rate. We give analytical lower bounds on these thresholds and show that the performance approaches that of belief propagation exponentially fast in the window size. We give numerical results including the thresholds computed using density evolution and the erasure rate curves for finite-length spatially coupled codes.
    IEEE Transactions on Information Theory 04/2013; 59(4):2277-2292. DOI:10.1109/TIT.2012.2231465 · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Low implementation complexity, low delay and close-to-optimal performance over a wide variety of channels are some of the advantages of spatially-coupled low-density parity-check (LDPC) codes. However, the error performance of the sliding window decoding scheme that is used to decode these codes is considerably degraded over channels with memory, such as the correlated erasure channel. Employing a block interleaver to encounter this situation is not always a viable option, since it introduces a large amount of delay and cancels out the low-delay property of the sliding window decoder. Another way to reduce the effects of erasure bursts is to construct a more robust code ensemble by presenting additional code design rules. However, this approach results in additional constraints on the already complicated code construction process. The authors propose a novel communication system that combats the effects of the erasure bursts through the use of a convolutional interleaver. The proposed system combines the inherent convolutional nature of the spatially-coupled LDPC codes with that of a convolutional interleaver to achieve very low overall delay. The performance of the proposed approach is analysed using the density evolution technique and the performance improvement is demonstrated as a function of the interleaving delay via computer simulations.
    IET Communications 05/2013; 7(8):755-765. DOI:10.1049/iet-com.2012.0729 · 0.72 Impact Factor