Artificial Magnetic Materials Using Fractal Hilbert Curves

Electr. & Comput. Eng. Dept., Univ. of Waterloo, Waterloo, ON, Canada
IEEE Transactions on Antennas and Propagation (Impact Factor: 2.46). 09/2010; DOI: 10.1109/TAP.2010.2050438
Source: IEEE Xplore

ABSTRACT Novel configurations based on Fractal Hilbert curves are proposed for realizing artificial magnetic materials. It is shown that the proposed configuration gives significant rise to miniaturization of artificial unit cells which in turn results in higher homogeneity in the material, and reduction in the profile of the artificial substrate. Analytical formulas are proposed for design and optimization of the presented structures, and are verified through full wave numerical characterization. The electromagnetic properties of the proposed structures are studied in detail and compared to square spiral from the point of view of size reduction, maximum value of the resultant permeability, magnetic loss, and frequency dispersion. To validate the analytical model and the numerical simulation results, an artificial substrate containing second-order Fractal Hilbert curve is fabricated and experimentally characterized using a microstrip-based characterization method.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Compared with the traditional split-ring resonator reported by Pendry et al. (IEEE Trans. Microw. Theory Tech. 47:2075, 1999), the co-directional split-ring resonator, which has inherent low mutual coupling between its outer and inner rings, can provide distinct dual-band magnetic resonances. In this paper, we analyzed and compared different types of split-ring resonator, but selected the co-directional split-ring resonator for the tri-band magnetic resonator design because of its attractive dual-band magnetic resonance characteristics. We then accommodated the rings’ resonant strengths in the co-directional split-ring resonator to be nearly equal, and added an arm-loaded ring to design a new tri-band magnetic resonator. Finally, we designed and experimentally demonstrated a broadband μ-negative planar material with low frequency dispersion, which consisted of three pairs of tri-band magnetic resonators with slightly different dimensions.
    Applied Physics A 106(4). · 1.69 Impact Factor
  • Source
    IEEE Transactions on Antennas and Propagation 02/2014; 62(2). · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report an alternative method of designing a new metamaterial with left handed (LH) characteristics over multi-band (MB) frequencies at microwave frequency regime. The resultant LH metamaterial (LHM) consisting of a single-sided tree-shaped fractal structure features triple magnetic resonances and one electric resonance apart from the lower metal plasma response, which is responsible for the three bands of negative refraction. The multi-resonant mechanism has been systematically studied to account for all electromagnetic behaviors, and capacitor-inductor circuit models are put forward for quantitative analysis. The LHM is balanced in the fundamental passband when only one layer is utilized, whereas the balanced condition is slightly broken when a collection of sub-wavelength cells are cascaded. The negative-zero-positive refraction of the fundamental LH band and the negative refraction of the higher LH band have been numerically validated by a prism-like LHM. For demonstration, a three-layer LHM slab sample is fabricated and measured. Consistent numerical and experimental results are observed. The method not requiring individual resonant particles and electrically continuous wires paves the way for a new route to compact MB ULM design. (C) 2012 Elsevier B.V. All rights reserved.
    Photonics and Nanostructures - Fundamentals and Applications 01/2013; 11(1):15-28. · 1.35 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014