Selection Policy-Induced Reduction Mappings for Boolean Networks

Dept. of Veterinary Physiol. & Pharmacology, Texas A&M Univ., College Station, TX, USA
IEEE Transactions on Signal Processing (Impact Factor: 2.81). 10/2010; DOI: 10.1109/TSP.2010.2050314
Source: IEEE Xplore

ABSTRACT Developing computational models paves the way to understanding, predicting, and influencing the long-term behavior of genomic regulatory systems. However, several major challenges have to be addressed before such models are successfully applied in practice. Their inherent high complexity requires strategies for complexity reduction. Reducing the complexity of the model by removing genes and interpreting them as latent variables leads to the problem of selecting which states and their corresponding transitions best account for the presence of such latent variables. We use the Boolean network (BN) model to develop the general framework for selection and reduction of the model's complexity via designating some of the model's variables as latent ones. We also study the effects of the selection policies on the steady-state distribution and the controllability of the model.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intervention in gene regulatory networks in the context of Markov decision processes has usually involved finding an optimal one-transition policy, where a decision is made at every transition whether or not to apply treatment. In an effort to model dosing constraint, a cyclic approach to intervention has previously been proposed in which there is a sequence of treatment windows and treatment is allowed only at the beginning of each window. This protocol ignores two practical aspects of therapy. First, a treatment typically has some duration of action: a drug will be effective for some period, after which there can be a recovery phase. This, too, might involve a cyclic protocol; however, in practice, a physician might monitor a patient at every stage and decide whether to apply treatment, and if treatment is applied, then the patient will be under the influence of the drug for some duration, followed by a recovery period. This results in an acyclic protocol. In this paper we take a unified approach to both cyclic and acyclic control with duration of effectiveness by placing the problem in the general framework of multiperiod decision epochs with infinite horizon discounting cost. The time interval between successive decision epochs can have multiple time units, where given the current state and the action taken, there is a joint probability distribution defined for the next state and the time when the next decision epoch will be called. Optimal control policies are derived, synthetic networks are used to investigate the properties of both cyclic and acyclic interventions with fixed-duration of effectiveness, and the methodology is applied to a mutated mammalian cell-cycle network.
    IEEE Transactions on Signal Processing 09/2012; 60(9):4930 -4944. · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulation of gene mutations in cells is known to be responsible for tumor progression, driving it from benign states to malignant states. However, previous studies have shown that the detailed sequence of gene mutations, or the steps in tumor progression, may vary from tumor to tumor, making it difficult to infer the exact path that a given type of tumor may have taken. In this paper, we propose an effective probabilistic algorithm for reconstructing the tumor progression process based on partial knowledge of the underlying gene regulatory network and the steady state distribution of the gene expression values in a given tumor. We take the BNp (Boolean networks with pertubation) framework to model the gene regulatory networks. We assume that the true network is not exactly known but we are given an uncertainty class of networks that contains the true network. This network uncertainty class arises from our partial knowledge of the true network, typically represented as a set of local pathways that are embedded in the global network. Given the SSD of the cancerous network, we aim to simultaneously identify the true normal (healthy) network and the set of gene mutations that drove the network into the cancerous state. This is achieved by analyzing the effect of gene mutation on the SSD of a gene regulatory network. At each step, the proposed algorithm reduces the uncertainty class by keeping only those networks whose SSDs get close enough to the cancerous SSD as a result of additional gene mutation. These steps are repeated until we can find the best candidate for the true network and the most probable path of tumor progression. Simulation results based on both synthetic networks and networks constructed from actual pathway knowledge show that the proposed algorithm can identify the normal network and the actual path of tumor progression with high probability. The algorithm is also robust to model mismatch and allows us to control the trade-off between efficiency and accuracy.
    BMC Bioinformatics 01/2011; 12 Suppl 10:S9. · 3.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a novel algorithm (CoDReduce) for reducing the size of a probabilistic Boolean network (PBN) model for genomic regulation. The algorithm uses the coefficient of determination (CoD) to find the best candidate for dasiadeletionpsila gene. The selection policy that determines how the transition probabilities for the reduced network are obtained from those in the original network is designed using the steady-state distribution (SSD) of the model. The performance of the algorithm is measured by the shift in the steady-state distribution after applying the mean-first-passage-time (MFPT) control policy, and the relative effect of the selection policy on the MFPT control policy.

Full-text (3 Sources)

Available from
May 29, 2014