Conference Paper

Spectral variability within species and its effects on Savanna tree species discrimination

Natural Resources & the Environ., Ecosyst.- Earth Obs., Council for Sci. & Ind. Res. (CSIR), Pretoria, South Africa
DOI: 10.1109/IGARSS.2009.5418038 Conference: Geoscience and Remote Sensing Symposium,2009 IEEE International,IGARSS 2009, Volume: 2
Source: IEEE Xplore

ABSTRACT Differences in within-species phenology and structure driven by factors including topography, edaphic properties, and climatic variables present important challenges for species differentiation with remote sensing in the Kruger National Park, South Africa. The objective of this study was to examine probable factors including intraspecies spectral variability and the spectral sample size that could affect remote sensing of Savanna tree species across a land-use gradient in the Kruger National park. Eighteen species were examined: Acacia gerradii, Acacia nigrescens, Combretum apiculatum, Combretum collinum, Combretum hereroense, Combretum imberbe, Combretum zeyheri, Dichrostachys cinerea, Euclea sp (E. divinurum and E. natalensis, Gymnosporia sp (G. buxifolia and G. senegalensis), Lonchocarpus capassa, Peltoforum africanum, Piliostigma thonningii, Pterocarpus rotundifolia, Sclerocarya birrea, Strychnos sp (S. madagascariensis, S. usambarensis), Terminalia sericea and Ziziphus mucronata. Discriminating species using the K-nearest neighbour (K = 1) classifier with spectral angle mapper (SAM) yielded a higher classification accuracy (48% overall accuracy) compared to 16% for the classification involving the mean spectra for each species as the training spectral set. Within-species spectral variability and the training sample size were identified as important factors affecting classification accuracy of the tree species. We recommend a non-parametric classifier such as K-nearest neighbour classifier for classifying and mapping tree species in a highly complex environment such as the savanna system of the Kruger National Park.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A Viking Lander 1 image was modeled as mixtures of reflectance spectra of palagonite dust, gray andesitelike rock, and a coarse rocklike soil. The rocks are covered to varying degrees by dust but otherwise appear unweathered. Rocklike soil occurs as lag deposits in deflation zones around stones and on top of a drift and as a layer in a trench dug by the lander. This soil probably is derived from the rocks by wind abrasion and/or spallation. Dust is the major component of the soil and covers most of the surface. The dust is unrelated spectrally to the rock but is equivalent to the global-scale dust observed telescopically. A new method was developed to model a multispectral image as mixtures of end-member spectra and to compare image spectra directly with laboratory reference spectra. The method for the first time uses shade and secondary illumination effects as spectral end-members; thus the effects of topography and illumination on all scales can be isolated or removed. The image was calibrated absolutely from the laboratory spectra, in close agreement with direct calibrations. The method has broad applications to interpreting multispectral images, including satellite images.
    Journal of Geophysical Research Atmospheres 08/1986; · 3.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, has developed a prototype interactive software system called the Spectral Image Processing System (SIPS) using IDL (the Interactive Data Language) on UNIX-based workstations. SIPS is designed to take advantage of the combination of high spectral resolution and spatial data presentation unique to imaging spectrometers. It streamlines analysis of these data by allowing scientists to rapidly interact with entire datasets. SIPS provides visualization tools for rapid exploratory analysis and numerical tools for quantitative modeling. The user interface is X-Windows-based, user friendly, and provides “point and click” operation. SIPS is being used for multidisciplinary research concentrating on use of physically based analysis methods to enhance scientific results from imaging spectrometer data. The objective of this continuing effort is to develop operational techniques for quantitative analysis of imaging spectrometer data and to make them available to the scientific community prior to the launch of imaging spectrometer satellite systems such as the Earth Observing System (EOS) High Resolution Imaging Spectrometer (HIRIS).
    Remote Sensing of Environment. 07/1993;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Estuaries are among the most invaded ecosystems on the planet. Such invasions have led in part, to the formation of a massive $1 billion restoration effort in California's Sacramento–San Joaquin River Delta. However, invasions of weeds into riparian, floodplain, and aquatic habitats threaten the success of restoration efforts within the watershed and jeopardize economic activities. The doctrine of early detection and rapid response to invasions has been adopted by land and water resource managers, and remote sensing is the logical tool of choice for identification and detection. However meteorological, physical, and biological heterogeneity in this large system present unique challenges to successfully detecting invasive weeds. We present three hyperspectral case studies which illustrate the challenges, and potential solutions, to mapping invasive weeds in wetland systems: 1) Perennial pepperweed was mapped over one portion of the Delta using a logistic regression model to predict weed occurrence. 2) Water hyacinth and 3) submerged aquatic vegetation (SAV), primarily composed of Brazilian waterweed, were mapped over the entire Delta using a binary decision tree that incorporated spectral mixture analysis (SMA), spectral angle mapping (SAM), band indexes, and continuum removal products. Perennial pepperweed detection was moderately successful; phenological stage influenced detection rates. Water hyacinth was mapped with modest accuracies, and SAV was mapped with high accuracies. Perennial pepperweed and water hyacinth both exhibited significant spectral variation related to plant phenology. Such variation must be accounted for in order to optimally map these species, and this was done for the water hyacinth case study. Submerged aquatic vegetation was not mapped to the species level due to complex non-linear mixing problems between the water column and its constituents, which was beyond the scope of the current study. We discuss our study in the context of providing guidelines for future remote sensing studies of aquatic systems.
    Remote Sensing of Environment 11/2008; · 5.10 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014