Article

A simple strategy to realize biomimetic surfaces with controlled anisotropic wetting

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
Applied Physics Letters (Impact Factor: 3.52). 03/2010; 96(5):053704 - 053704-3. DOI: 10.1063/1.3297881
Source: IEEE Xplore

ABSTRACT The study of anisotropic wetting has become one of the most important research areas in biomimicry. However, realization of controlled anisotropic surfaces remains challenging. Here we investigated anisotropic wetting on grooves with different linewidth, period, and height fabricated by laser interference lithography and found that the anisotropy strongly depended on the height. The anisotropy significantly increased from 9° to 48° when the height was changed from 100 nm to 1.3 μ m . This was interpreted by a thermodynamic model as a consequence of the increase of free energy barriers versus the height increase. According to the relationship, controlled anisotropic surfaces were rapidly realized by adjusting the grooves’ height that was simply accomplished by changing the resin thickness. Finally, the perpendicular contact angle was further enhanced to 131°±2° by surface modification, which was very close to 135°±3° of a common grass leaf.

Full-text

Available from: Hong-Bo Sun, Oct 31, 2014
0 Bookmarks
 · 
157 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, Janus micropillar array (MPA) with fore-aft controllable wettability difference was demonstrated. With two-step modification process, we successfully decorate the Janus pillar skeletons with wettability-switchable polymer brush on one side and hydrophilic self-assembled monolayer on the other. Owing to the switchable wettability of the polymer brush, the patterned surface could switch between anisotropic wetting and isotropic wetting at different temperatures, which gives the possibility of coupling the well-designed surface with microfluidic channel to manipulate the microfluid motion. Additionally, a further photo-thermal control of microfluid was also established based on the thermal-responsive Janus MPA through introducing infrared light to adjust the temperature of the microfluidic system. We believe that the thermal-responsive Janus micropillar arrays would provide a new strategy to control the flow and motion of fluids in microfluidic channels and show potential applications in the future microfluidic chips.
    ACS Applied Materials & Interfaces 12/2014; 7(1). DOI:10.1021/am5063647 · 5.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anisotropic surfaces have great potential in important applications like microfluidic devices, lab-on-chip systems, micro-reactors, coatings and printings. Anisotropic wetting behavior on micro-pillars is of particular interest since micro-scale morphology on many natural anisotropic wetting surfaces are pillar-like structures. It is found that the micro-pillars show anisotropic wettability at Wenzel state and isotropic wettability at Cassie state. Increasing the micro-pillar height will lead to the result that anisotropic wettability switches to isotropic wettability. Increasing space ratio may amplify the anisotropy. The relationship between anisotropic wettability and wetting state is interpreted by a thermodynamic model. The anisotropic–isotropic wettability switch can be attributed to the wetting state transition due to the intruding height change. Our findings may improve the understanding of the anisotropic wetting behavior on micro-pillars and provide an easy way to tailor the anisotropic wettability by simply changing the micro-pillar geometry.
    10/2014; 2. DOI:10.1016/j.colcom.2014.08.002
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anisotropic wetting of machined surfaces is widely applied in industries which can be greatly affected by roughness and solid's chemical properties. However, there has not been much work on it. A free-energy thermodynamic model is presented by analyzing geometry morphology of machined surfaces (2-D model surfaces), which demonstrates the influence of roughness on anisotropic wetting. It can be concluded that the energy barrier is one of the main reasons for the anisotropic wetting existing in the direction perpendicular to the lay. In addition, experiments in investigating anisotropic wetting, which was characterized by the static contact angle and droplet's distortion, were performed on machined surfaces with different roughness on hydrophilic and hydrophobic materials. The droplet's anisotropy found on machined surfaces increased with mean slope of roughness profile Kr. It indicates that roughness on anisotropic wetting on hydrophilic materials has a stronger effect than that on hydrophobic materials. Furthermore, the contact angles predicted by the model are basically consistent with the experimentally ones.
    Applied Surface Science 03/2015; 331. DOI:10.1016/j.apsusc.2014.12.071 · 2.54 Impact Factor