A simple strategy to realize biomimetic surfaces with controlled anisotropic wetting

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
Applied Physics Letters (Impact Factor: 3.3). 03/2010; 96(5):053704 - 053704-3. DOI: 10.1063/1.3297881
Source: IEEE Xplore


The study of anisotropic wetting has become one of the most important research areas in biomimicry. However, realization of controlled anisotropic surfaces remains challenging. Here we investigated anisotropic wetting on grooves with different linewidth, period, and height fabricated by laser interference lithography and found that the anisotropy strongly depended on the height. The anisotropy significantly increased from 9° to 48° when the height was changed from 100 nm to 1.3 μ m . This was interpreted by a thermodynamic model as a consequence of the increase of free energy barriers versus the height increase. According to the relationship, controlled anisotropic surfaces were rapidly realized by adjusting the grooves’ height that was simply accomplished by changing the resin thickness. Finally, the perpendicular contact angle was further enhanced to 131°±2° by surface modification, which was very close to 135°±3° of a common grass leaf.

Download full-text


Available from: Hong-Bo Sun, Oct 31, 2014
8 Reads
  • Source
    • "Therefore, the static contact angle differs along the TPCL. Some researchers addressed the wetting characteristic as " anisotropic wetting " , as opposed to the isotropic wetting [10] [11] [12] [13] [14]. Due to the capacity of restricting liquids to flow toward desired direction, the anisotropic wetting has attracted remarkable attentions on microfluidic devices [15] [16] [17] [18]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Anisotropic wetting of machined surfaces is widely applied in industries which can be greatly affected by roughness and solid's chemical properties. However, there has not been much work on it. A free-energy thermodynamic model is presented by analyzing geometry morphology of machined surfaces (2-D model surfaces), which demonstrates the influence of roughness on anisotropic wetting. It can be concluded that the energy barrier is one of the main reasons for the anisotropic wetting existing in the direction perpendicular to the lay. In addition, experiments in investigating anisotropic wetting, which was characterized by the static contact angle and droplet's distortion, were performed on machined surfaces with different roughness on hydrophilic and hydrophobic materials. The droplet's anisotropy found on machined surfaces increased with mean slope of roughness profile Kr. It indicates that roughness on anisotropic wetting on hydrophilic materials has a stronger effect than that on hydrophobic materials. Furthermore, the contact angles predicted by the model are basically consistent with the experimentally ones.
    Applied Surface Science 03/2015; 331. DOI:10.1016/j.apsusc.2014.12.071 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, one simple method to control two-direction anisotropic wetting by regular micropearl arrays was demonstrated. Various micropearl arrays with large area were rapidly fabricated by a kind of improved laser interference lithography. Specially, we found that the parallel contact angle (CA) theta(2) decreased from 93 degrees to 67 degrees as the intensity ratio of four laser beams increased from 2:1 to 30:1, while the perpendicular CA theta(1) determined by the thickness of the resin remained constant. This was interpreted as the decrease of height variations Delta h from 1100 to 200 nm along the parallel direction caused by the increase of the intensity ratio. According to this rule, both theta(1) and theta(2) could be simultaneously controlled by adjusting the height variation Delta h and the resin thickness. Moreover, by combining appropriate design and low surface energy modification, a natural anisotropic rice leaf exhibiting CAs of 146 degrees +/- 2 degrees/153 degrees +/- 3 degrees could be mimicked by our anisotropic biosurface with the CAs 145 degrees +/- 1 degrees/150 degrees +/- 2 degrees. We believe that these controlled anisotropic biosurfaces will be helpful for designing smart, fluid-controllable interfaces that may be applied in novel microfluidic devices, evaporation-driven micro/nanostructures, and liquid microdroplet directional transfer.
    Langmuir 07/2010; 26(14):12012-6. DOI:10.1021/la1015753 · 4.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we present a new method to realize anisotropy by restricting a droplet on an unstructured Si hydrophobic domain between two superhydrophobic strips fabricated by femtosecond laser. The water contact angles and corresponding water baseline length were investigated. The results showed that anisotropy would vary with the volume-induced pinning-depinning-repinning behavior of the droplet. Furthermore, through the observation of water response on small Si domain, the adhesive force of the structure is proven to be the key factor giving rise to the anisotropy wetting. This phenomenon could potentially be used as a model for fundamental research, and such structures could be utilized to control large volume in microfluidic devices, lab-on-chip system, microreactors, and self-cleaning surfaces.
    Langmuir 01/2011; 27(1):359-65. DOI:10.1021/la103293j · 4.46 Impact Factor
Show more