Haspin: a newly discovered regulator of mitotic chromosome behavior

Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, 1 Jimmy Fund Way, Boston, MA 02115, USA.
Chromosoma (Impact Factor: 4.6). 12/2009; 119(2):137-47. DOI: 10.1007/s00412-009-0250-4


The haspins are divergent members of the eukaryotic protein kinase family that are conserved in many eukaryotic lineages including animals, fungi, and plants. Recently-solved crystal structures confirm that the kinase domain of human haspin has unusual structural features that stabilize a catalytically active conformation and create a distinctive substrate binding site. Haspin localizes predominantly to chromosomes and phosphorylates histone H3 at threonine-3 during mitosis, particularly at inner centromeres. This suggests that haspin directly regulates chromosome behavior by modifying histones, although it is likely that additional substrates will be identified in the future. Depletion of haspin by RNA interference in human cell lines causes premature loss of centromeric cohesin from chromosomes in mitosis and failure of metaphase chromosome alignment, leading to activation of the spindle assembly checkpoint and mitotic arrest. Haspin overexpression stabilizes chromosome arm cohesion. Haspin, therefore, appears to be required for protection of cohesion at mitotic centromeres. Saccharomyces cerevisiae homologues of haspin, Alk1 and Alk2, are also implicated in regulation of mitosis. In mammals, haspin is expressed at high levels in the testis, particularly in round spermatids, so it seems likely that haspin has an additional role in post-meiotic spermatogenesis. Haspin is currently the subject of a number of drug discovery efforts, and the future use of haspin inhibitors should provide new insight into the cellular functions of these kinases and help determine the utility of, for example, targeting haspin for cancer therapy.

8 Reads
  • Source
    • "NEK5 forms a heterodimer with NEK4 and NEK6 and assists these NEKs in regulating cellular expansion and morphogenesis [68]. NEK5 is strongly regulated during cell-cycle and exhibits analogous function to CDC2 (Cyclin-Dependent Kinase) [69]. More interestingly, in our screen, GSG2 (Germ cell-specific gene 2) was identified as a novel phosphorylation target of Plk1. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Polo like kinase 1 (Plk1) is a key player in orchestrating the wide variety of cell-cycle events ranging from centrosome maturation, mitotic entry, checkpoint recovery, transcriptional control, spindle assembly, mitotic progression, cytokinesis and DNA damage checkpoints recovery. Due to its versatile nature, Plk1 is considered an imperative regulator to tightly control the diverse aspects of the cell cycle network. Interactions among Plk1 polo box domain (PBD) and its putative binding proteins are crucial for the activation of Plk1 kinase domain (KD). To date, only a few substrate candidates have been characterized through the inclusion of both polo box and kinase domain-mediated interactions. Thus it became compelling to explore precise and specific Plk1 substrates through reassessment and extension of the structure-function paradigm. To narrow this apparently wide gap in knowledge, here we employed a thorough sequence search of Plk1 phosphorylation signature containing proteins and explored their structure-based features like conceptual PBD-binding capabilities and subsequent recruitment of KD directed phosphorylation to dissect novel targets of Plk1. Collectively, we identified 4,521 phosphodependent proteins sharing similarity to the consensus phosphorylation and PBD recognition motifs. Subsequent application of filters including similarity index, Gene Ontology enrichment and protein localization resulted in stringent pre-filtering of irrelevant candidates and isolated unique targets with well-defined roles in cell-cycle machinery and carcinogenesis. These candidates were further refined structurally using molecular docking and dynamic simulation assays. Overall, our screening approach enables the identification of several undefined cell-cycle associated functions of Plk1 by uncovering novel phosphorylation targets.
    PLoS ONE 08/2013; 8(8):e70843. DOI:10.1371/journal.pone.0070843 · 3.23 Impact Factor
  • Source
    • "H3K79 methylation is catalyzed by DOT1, which has been implicated in cell-cycle regulation in both yeast and mammals [2] [3] [4] [5]. On the tail of H3, three methylatable lysines lie adjacent to residues that have been found to be phosphorylated during mitosis, T3/K4, K9/S10, and K27/S28 [6] [7] [8]. However, it is not clear in what capacity lysine methylation and the adjacent phosphorylations occur together during mitosis or what the role is of these methyl-phospho modifications. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The current study characterizes the mitosis-associated histone dual modification on the core of histone H3: trimethylation of histone H3 lysine 79 and simultaneous phosphorylation of H3 threonine 80 (H3K79me3T80ph). Through the use of protein and microscopy-based techniques, we find that H3K79me3T80ph shares a similar spatial and temporal regulation as H3S10ph but additionally requires methyltransferase activity. In addition, we find that Aurora kinase activity is necessary for the catalysis of H3K79me3T80ph in vivo. Finally, our analysis of H3K79me3T80ph using a tissue microarray indicates that H3K79me3T80ph marks a subset of primary cutaneous melanomas with metastatic potential indicating that H3K79me3T80ph may identify a subset of invasive melanomas with a more aggressive clinical behaviour.
    11/2012; 2012(12):823534. DOI:10.1155/2012/823534
  • Source
    • "Haploid germ-cell-specific nuclear protein kinase (Haspin) is a serine/threonine protein kinase that has an atypical catalytic domain that is highly divergent from other eukaryotic protein kinases at the sequence level [48]. Haspin was first identified in mice as the product of the germ-cell-specific gene-2 and is conserved in other eukaryotes, including S. cerevisiae. "
    [Show abstract] [Hide abstract]
    ABSTRACT: During mitosis, human cells exhibit a peak of protein phosphorylation that alters the behaviour of a significant proportion of proteins, driving a dramatic transformation in the cell's shape, intracellular structures and biochemistry. These mitotic phosphorylation events are catalysed by several families of protein kinases, including Auroras, Cdks, Plks, Neks, Bubs, Haspin and Mps1/TTK. The catalytic activities of these kinases are activated by phosphorylation and through protein-protein interactions. In this review, we summarize the current state of knowledge of the structural basis of mitotic kinase activation mechanisms. This review aims to provide a clear and comprehensive primer on these mechanisms to a broad community of researchers, bringing together the common themes, and highlighting specific differences. Along the way, we have uncovered some features of these proteins that have previously gone unreported, and identified unexplored questions for future work. The dysregulation of mitotic kinases is associated with proliferative disorders such as cancer, and structural biology will continue to play a critical role in the development of chemical probes used to interrogate disease biology and applied to the treatment of patients.
    Open Biology 11/2012; 2(11):120136. DOI:10.1098/rsob.120136 · 5.78 Impact Factor
Show more


8 Reads
Available from