Article

Radiation Effects on Ytterbium- and Ytterbium/Erbium-Doped Double-Clad Optical Fibers

DIF, CEA, Bruyeres-le-Chatel, France
IEEE Transactions on Nuclear Science (Impact Factor: 1.22). 01/2009; 56(Part 1):3293 - 3299. DOI: 10.1109/TNS.2009.2033999
Source: IEEE Xplore

ABSTRACT We characterize by different spectroscopic techniques the radiation effects on ytterbium- (Yb) and ytterbium/erbium (Yb/Er)-doped optical fibers. Their vulnerability to the environment of outer space is evaluated through passive radiation-induced attenuation (RIA) measurements during and after exposure to 10 keV X-rays, 1 MeV ¿-rays, and 105 MeV protons. These fibers present higher levels of RIA (1000×) than telecommunication-type fibers. Measured RIA is comparable for ¿-rays and protons and is on the order of 1 dB/m at 1.55 ¿ m after a few tenths of a kilorad. Their host matrix codoped with aluminum (Al) and/or phosphorus (P) is mainly responsible for their enhanced radiation sensitivity. Thanks to the major improvements of the Er-doped glass spectroscopic properties in case of Yb-codoping, Yb/Er-doped fibers appear as very promising candidates for outer space applications. In the infrared part of the spectrum, losses in P-codoped Yb-doped fibers are due to the P1 center that absorbs around 1.6 ¿ m and are very detrimental for the operation of Er-codoped devices in a harsh environment. The negative impact of this defect seems reduced in the case of Al and P-codoping.

0 Bookmarks
 · 
106 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this review paper, we present radiation effects on silica-based optical fibers. We first describe the mechanisms inducing microscopic and macroscopic changes under irradiation: radiation-induced attenuation, radiation-induced emission and compaction. We then discuss the influence of various parameters related to the optical fiber, to the harsh environments and to the fiber-based applications on the amplitudes and kinetics of these changes. Then, we focus on advances obtained over the last years. We summarize the main results regarding the fiber vulnerability and hardening to radiative constraints associated with several facilities such as Megajoule class lasers, ITER, LHC, nuclear power plants or with space applications. Based on the experience gained during these projects, we suggest some of the challenges that will have to be overcome in the near future to allow a deeper integration of fibers and fiber-based sensors in radiative environments.
    IEEE Transactions on Nuclear Science 06/2013; 60(3):2015-2036. · 1.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present radiation reliability properties and their enhancement of ErYb doped optical fibers in terms of induced loss and lifetime prediction via master curve analysis method. In this study, we are primarily concerned with the effects of ionizing radiation on the performance of double cladded ErYb doped optical fibers in an accelerated low dose γ-radiation environment (i.e. <120 rad/h rate) for high power optical amplifiers to be used in satellite communication systems. We demonstrate a novel method that utilizes pre-radiation exposure and thermal annealing, for enhancing radiation hardness of the fibers with respect to induced optical loss and lifetime prediction. Based on this method, we are able to modify radiation induced loss-rate properties of the fiber with an initial loss penalty, realizing overall loss-budget improvement for relatively long-term deployment (i.e. >5 years). In a direct comparison to non-hardened ErYb doped fibers, we demonstrate approximately 0.16 dB/m of radiation induced loss improvement including an initial loss penalty of 0.14 dB for radiation-hardened fibers over a 10-year duration in a natural low dose (i.e. <0.3 rad/h) radiation environment, i.e. low earth orbit.
    Optical Fiber Technology 03/2013; 19(2):88–92. · 1.19 Impact Factor
  • Journal of Non-Crystalline Solids 10/2013; · 1.72 Impact Factor

Full-text

View
6 Downloads
Available from
May 21, 2014