Article

Assembly stoichiometry of the GluK2/GluK5 kainate receptor complex.

Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA.
Cell Reports (Impact Factor: 7.21). 03/2012; 1(3):234-40. DOI: 10.1016/j.celrep.2012.01.003
Source: PubMed

ABSTRACT Ionotropic glutamate receptors assemble as homo- or heterotetramers. One well-studied heteromeric complex is formed by the kainate receptor subunits GluK2 and GluK5. Retention motifs prevent trafficking of GluK5 homomers to the plasma membrane, but coassembly with GluK2 yields functional heteromeric receptors. Additional control over GluK2/GluK5 assembly seems to be exerted by the aminoterminal domains, which preferentially assemble into heterodimers as isolated domains. However,the stoichiometry of the full-length GluK2/GluK5 receptor complex has yet to be determined, as is the case for all non-NMDA glutamate receptors. Here, we address this question, using a single-molecule imaging technique that enables direct counting of the number of each GluK subunit type in homomeric and heteromeric receptors in the plasma membranes of live cells. We show that GluK2 and GluK5 assemble with 2:2 stoichiometry. This is an important step toward understanding the assembly mechanism, architecture, and functional consequences of heteromer formation in ionotropic glutamate receptors.

0 Bookmarks
 · 
147 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ionotropic glutamate receptors (iGluRs) mediate the vast majority of excitatory neurotransmission in the central nervous system of vertebrates. In the protein family of iGluRs, kainate receptors (KARs) comprise the probably least well understood receptor class. Although KARs act as key players in the regulation of synaptic network activity, many properties and functions of these proteins remain elusive until now. Especially the precise pre-, extra-, and postsynaptic localization of KARs plays a critical role for neuronal function, as an unbalanced localization of KARs would ultimately lead to dysregulated neuronal excitability. Recently, important advances in the understanding of the regulation of surface expression, function, and agonist-dependent endocytosis of KARs have been achieved. Post-translational modifications like PKC-mediated phosphorylation and SUMOylation have been reported to critically influence surface expression and endocytosis, while newly discovered auxiliary proteins were shown to shape the functional properties of KARs.
    09/2014; 4(3):565-595. DOI:10.3390/membranes4030565
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human Bestrophin 1 (hBest1) is a calcium-activated chloride channel that regulates neuronal excitability, synaptic activity, and retinal homeostasis. Mutations in hBest1 cause the autosomal-dominant Best macular dystrophy (BMD). Because hBest1 mutations cause BMD, but a knockout does not, we wondered if hBest1 mutants exert a dominant negative effect through interaction with other calcium-activated chloride channels, such as hBest2, 3, or 4, or transmembrane member 16A (TMEM16A), a member of another channel family. The subunit architecture of Best channels is debated, and their ability to form heteromeric channel assemblies is unclear. Using single-molecule subunit analysis, we find that each of hBest1, 2, 3, and 4 forms a homotetrameric channel. Despite considerable conservation among hBests, hBest1 has little or no interaction with other hBests or mTMEM16A. We identify the domain responsible for assembly specificity. This domain also plays a role in channel function. Our results indicate that Best channels preferentially self-assemble into homotetramers.
    Proceedings of the National Academy of Sciences 04/2014; 111(17). DOI:10.1073/pnas.1400248111 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The tetrameric kainate receptors can be assembled from a combination of five different subunit subtypes. While GluK1-3 subunits can form homomeric receptors, GluK4 and GluK5 require a heteromeric partner to assemble, traffic to the membrane surface, and produce a functional channel. Previous studies have shown that incorporation of a GluK4 or GluK5 subunit changes both receptor pharmacology and channel kinetics. We directly compared the functional characteristics of recombinant receptors containing either GluK4 or GluK5 in combination with the GluK1 or GluK2 subunit. In addition, we took advantage of mutations within the agonist binding sites of GluK1, GluK2, or GluK5 to isolate the response of the wild-type partner within the heteromeric receptor. Our results suggest that GluK1 and GluK2 differ primarily in their pharmacological properties, but that GluK4 and GluK5 have distinct functional characteristics. In particular, while binding of agonist to only the GluK5 subunit appears to activate the channel to a non-desensitizing state, binding to GluK4 does produce some desensitization. This suggests that GluK4 and GluK5 differ fundamentally in their contribution to receptor desensitization. In addition, mutation of the agonist binding site of GluK5 results in a heteromeric receptor with a glutamate sensitivity similar to homomeric GluK1 or GluK2 receptors, but which requires higher agonist concentrations to produce desensitization. This suggests that onset of desensitization in heteromeric receptors is determined more by the number of subunits bound to agonist than by the identity of those subunits. The distinct, concentration-dependent properties observed with heteromeric receptors in response to glutamate or kainate are consistent with a model in which either subunit can activate the channel, but in which occupancy of both subunits within a dimer is needed to allow desensitization of GluK2/K5 receptors.
    Neuroscience 08/2014; 278. DOI:10.1016/j.neuroscience.2014.08.009 · 3.33 Impact Factor

Preview

Download
5 Downloads
Available from