Article

MHC class I antigen processing distinguishes endogenous antigens based on their translation from cellular vs. viral mRNA

Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 04/2012; 109(18):7025-30. DOI: 10.1073/pnas.1112387109
Source: PubMed

ABSTRACT To better understand the generation of MHC class I-associated peptides, we used a model antigenic protein whose proteasome-mediated degradation is rapidly and reversibly controlled by Shield-1, a cell-permeant drug. When expressed from a stably transfected gene, the efficiency of antigen presentation is ~2%, that is, one cell-surface MHC class I-peptide complex is generated for every 50 folded source proteins degraded upon Shield-1 withdrawal. By contrast, when the same protein is expressed by vaccinia virus, its antigen presentation efficiency is reduced ~10-fold to values similar to those reported for other vaccinia virus-encoded model antigens. Virus infection per se does not modify the efficiency of antigen processing. Rather, the efficiency difference between cellular and virus-encoded antigens is based on whether the antigen is synthesized from transgene- vs. virus-encoded mRNA. Thus, class I antigen-processing machinery can distinguish folded proteins based on the precise details of their synthesis to modulate antigen presentation efficiency.

0 Followers
 · 
126 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The inhibitory receptors for MHC class I have a central role in controlling natural killer (NK) cell activity. Soon after their discovery, it was found that these receptors have a degree of peptide selectivity. Such peptide selectivity has been demonstrated for all inhibitory killer cell immunoglobulin-like receptor (KIR) tested to date, certain activating KIR, and also members of the C-type lectin-like family of receptors. This selectivity is much broader than the peptide specificity of T cell receptors, with NK cell receptors recognizing peptide motifs, rather than individual peptides. Inhibitory receptors on NK cells can survey the peptide:MHC complexes expressed on the surface of target cells, therefore subsequent transduction of an inhibitory signal depends on the overall peptide content of these MHC class I complexes. Functionally, KIR-expressing NK cells have been shown to be unexpectedly sensitive to changes in the peptide content of MHC class I, as peptide:MHC class I complexes that weakly engage KIR can antagonize the inhibitory signals generated by engagement of stronger KIR-binding peptide:MHC class I complexes. This property provides KIR-expressing NK cells with the potential to recognize changes in the peptide:MHC class I repertoire, which may occur during viral infections and tumorigenesis. By contrast, in the presence of HLA class I leader peptides, virus-derived peptides can induce a synergistic inhibition of CD94:NKG2A-expressing NK cells through recruitment of CD94 in the absence of NKG2A. On the other hand, CD94:NKG2A-positive NK cells can be exquisitely sensitive to changes in the levels of MHC class I. Peptide antagonism and sensitivity to changes in MHC class I levels are properties that distinguish KIR and CD94:NKG2A. The subtle difference in the properties of NK cells expressing these receptors provides a rationale for having complementary inhibitory receptor systems for MHC class I.
    Frontiers in Immunology 03/2014; 5:133. DOI:10.3389/fimmu.2014.00133
  • [Show abstract] [Hide abstract]
    ABSTRACT: A common strategy to understand a biological system is to selectively perturb it and observe its response. Although technologies now exist to manipulate cellular systems at the genetic and transcript level, the direct manipulation of functions at the protein level can offer significant advantages in precision, speed, and reversibility. Combining the specificity of genetic manipulation and the spatiotemporal resolution of light- and small molecule-based approaches now allows exquisite control over biological systems to subtly perturb a system of interest in vitro and in vivo. Conditional perturbation mechanisms may be broadly characterized by change in intracellular localization, intramolecular activation, or degradation of a protein-of-interest. Here we review recent advances in technologies for conditional regulation of protein function and suggest further areas of potential development.
    Chemistry & Biology 09/2014; 21(9):1238-1252. DOI:10.1016/j.chembiol.2014.08.011 · 6.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemical biology is a young and rapidly developing scientific field. In this field, chemistry is inspired by biology to create various tools to monitor and modulate biochemical and cell biological processes. Chemical contributions such as small-molecule inhibitors and activity-based probes (ABPs) can provide new and unique insights into previously unexplored cellular processes. This review provides an overview of recent breakthroughs in chemical biology that are likely to have a significant impact on cell biology. We also discuss the application of several chemical tools in cell biology research.
    Trends in Cell Biology 12/2014; 24(12). DOI:10.1016/j.tcb.2014.07.002 · 12.31 Impact Factor

Full-text (2 Sources)

Download
91 Downloads
Available from
May 28, 2014