Article

Chikungunya virus–induced autophagy delays caspase-dependent cell death

Unité Immunobiologie des Cellules Dendritiques, Department of Immunology, Institut Pasteur, Paris, France.
Journal of Experimental Medicine (Impact Factor: 13.91). 04/2012; 209(5):1029-47. DOI: 10.1084/jem.20110996
Source: PubMed

ABSTRACT Autophagy is an important survival pathway and can participate in the host response to infection. Studying Chikungunya virus (CHIKV), the causative agent of a major epidemic in India, Southeast Asia, and southern Europe, we reveal a novel mechanism by which autophagy limits cell death and mortality after infection. We use biochemical studies and single cell multispectral assays to demonstrate that direct infection triggers both apoptosis and autophagy. CHIKV-induced autophagy is mediated by the independent induction of endoplasmic reticulum and oxidative stress pathways. These cellular responses delay apoptotic cell death by inducing the IRE1α-XBP-1 pathway in conjunction with ROS-mediated mTOR inhibition. Silencing of autophagy genes resulted in enhanced intrinsic and extrinsic apoptosis, favoring viral propagation in cultured cells. Providing in vivo evidence for the relevance of our findings, Atg16L(HM) mice, which display reduced levels of autophagy, exhibited increased lethality and showed a higher sensitivity to CHIKV-induced apoptosis. Based on kinetic studies and the observation that features of apoptosis and autophagy were mutually exclusive, we conclude that autophagy inhibits caspase-dependent cell death but is ultimately overwhelmed by viral replication. Our study suggests that inducers of autophagy may limit the pathogenesis of acute Chikungunya disease.

Download full-text

Full-text

Available from: Pierre-Emmanuel Joubert, Jul 06, 2015
0 Followers
 · 
413 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Innate immune responses are the first line of defense for an organism to restrict invading pathogens. They fulfill two main functions, namely detection of the pathogen to successively alarm the appropriate components of the immune system and early inhibition of the infection to prevent demise of the infected organism before a more tailored immune response, usually mediated by the adaptive immune system, can be mounted. Autophagy and phagocytosis, modified by the autophagic core machinery, contribute to these functions by regulating pathogen detection, influencing the production of innate immune mediators and directly restricting intracellular and extracellular pathogens as an effector mechanism of innate immunity. These aspects of the involvement of mainly macroautophagy in innate immune responses will be discussed in this review.
    Cellular Microbiology 09/2014; 16(11). DOI:10.1111/cmi.12358 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy has been implicated as a component of host defense, but the significance of antimicrobial autophagy in vivo and the mechanism by which it is regulated during infection are poorly defined. Here we found that antiviral autophagy was conserved in flies and mammals during infection with Rift Valley fever virus (RVFV), a mosquito-borne virus that causes disease in humans and livestock. In Drosophila, Toll-7 limited RVFV replication and mortality through activation of autophagy. RVFV infection also elicited autophagy in mouse and human cells, and viral replication was increased in the absence of autophagy genes. The mammalian Toll-like receptor adaptor, MyD88, was required for anti-RVFV autophagy, revealing an evolutionarily conserved requirement for pattern-recognition receptors in antiviral autophagy. Pharmacologic activation of autophagy inhibited RVFV infection in mammalian cells, including primary hepatocytes and neurons. Thus, autophagy modulation might be an effective strategy for treating RVFV infection, which lacks approved vaccines and therapeutics.
    Immunity 12/2013; DOI:10.1016/j.immuni.2013.10.020 · 19.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chikungunya virus (CHIKV) infection causes a disease which appears to affect multiple cell types and tissues. The acute phase is manifested by a non-fatal febrile illness, polyarthralgia and maculopapular rashes in adults, but with recurrent arthralgia that may linger for months during convalescence. The issue of cellular and tissue tropism of CHIKV has elicited interest primarily because of this lingering incapacitating chronic joint pain, as well as clear encephalopathy in severe cases among neonates during the re-emergence of the virus in recent epidemics. The principle cell types productively infected by CHIKV are skin fibroblasts, epithelial cells and lymphoid tissues. There is controversy as to whether CHIKV productively infects haematopoietic cells and neurones/glia. CHIKV infection triggers rapid and robust innate immune responses which quickly clears the acute phase infection. However, significant acute as well as chronic infection of less obvious cell types, such as monocytes, neurones/glia or even CNS neural progenitors may conceivably occur. There is therefore a need to ascertain the full range potential of CHIKV tropism, fully understand the cellular responses triggered during the acute the convalescent phases, and explore possible cell types that might be the source of chronic problems associated with CHIKV infection.
    Cellular Microbiology 06/2012; 14(9):1354-63. DOI:10.1111/j.1462-5822.2012.01825.x · 4.82 Impact Factor