The ubiquitin ligase mLin41 temporally promotes neural progenitor cell maintenance through FGF signaling.

Howard Hughes Medical Institute, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA.
Genes & development (Impact Factor: 12.64). 04/2012; 26(8):803-15. DOI: 10.1101/gad.187641.112
Source: PubMed

ABSTRACT How self-renewal versus differentiation of neural progenitor cells is temporally controlled during early development remains ill-defined. We show that mouse Lin41 (mLin41) is highly expressed in neural progenitor cells and its expression declines during neural differentiation. Loss of mLin41 function in mice causes reduced proliferation and premature differentiation of embryonic neural progenitor cells. mLin41 was recently implicated as the E3 ubiquitin ligase that mediates degradation of Argonaute 2 (AGO2), a key effector of the microRNA pathway. However, our mechanistic studies of neural progenitor cells indicate mLin41 is not required for AGO2 ubiquitination or stability. Instead, mLin41-deficient neural progenitors exhibit hyposensitivity for fibroblast growth factor (FGF) signaling. We show that mLin41 promotes FGF signaling by directly binding to and enhancing the stability of Shc SH2-binding protein 1 (SHCBP1) and that SHCBP1 is an important component of FGF signaling in neural progenitor cells. Thus, mLin41 acts as a temporal regulator to promote neural progenitor cell maintenance, not via the regulation of AGO2 stability, but through FGF signaling.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: In certain instances we can witness cells controlling the sequence of their behaviors as they divide and differentiate. Striking examples occur in the nervous systems of animals where the order of differentiated cell types can be traced to internal changes in their progenitors. Elucidating the molecular mechanisms underlying such cell fate succession has been of interest for its role in generating cell type diversity and proper tissue structure. Another well-studied instance of developmental timing occurs in the larva of the nematode Caenorhabditis elegans, where the heterochronic gene pathway controls the succession of a variety of developmental events. In each case, the identification of molecules involved and the elucidation of their regulatory relationships is ongoing, but some important factors and dynamics have been revealed. In particular, certain homologs of worm heterochronic factors have been shown to work in neural development, alerting us to possible connections among these systems and the possibility of universal components of timing mechanisms. These connections also cause us to consider whether cell-intrinsic timing is more widespread, regardless of whether multiple differentiated cell types are produced in any particular order.For further resources related to this article, please visit the WIREs website.Conflict of interest: The authors have declared no conflicts of interest for this article.
    Wiley Interdisciplinary Reviews: Developmental Biology. 07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T cell development and activation are highly regulated processes, and their proper execution is important for a competent immune system. Shc SH2-domain binding protein-1 (Shcbp1) is an evolutionarily conserved protein that binds to the adaptor protein ShcA. Studies in Drosophila and in cell lines have strongly linked Shcbp1 to cell proliferation, embryonic development, growth factor signaling, and tumorigenesis. Here we show that Shcbp1 expression is strikingly upregulated during the β-selection checkpoint in thymocytes, and that its expression tightly correlates with proliferative stages of T cell development. To evaluate the role for Shcbp1 during thymic selection and T cell function in vivo, we generated mice with global and conditional deletion of Shcbp1. Surprisingly, the loss of Shcbp1 expression did not have an obvious effect during T cell development. However, in a mouse model of experimental autoimmune encephalomyelitis (EAE), which depends on CD4+ T cell function and mimics multiple features of the human disease multiple sclerosis, Shcbp1 deficient mice had reduced disease severity and improved survival, and this effect was T cell intrinsic. These data suggest that despite the striking upregulation of Shcbp1 during T cell proliferation, loss of Shcbp1 does not directly affect T cell development, but regulates CD4+ T cell effector function in vivo.
    PLoS ONE 08/2014; 9(8):e105576. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are small non-coding RNAs that function as guide molecules in RNA silencing. Targeting most protein-coding transcripts, miRNAs are involved in nearly all developmental and pathological processes in animals. The biogenesis of miRNAs is under tight temporal and spatial control, and their dysregulation is associated with many human diseases, particularly cancer. In animals, miRNAs are ∼22 nucleotides in length, and they are produced by two RNase III proteins - Drosha and Dicer. miRNA biogenesis is regulated at multiple levels, including at the level of miRNA transcription; its processing by Drosha and Dicer in the nucleus and cytoplasm, respectively; its modification by RNA editing, RNA methylation, uridylation and adenylation; Argonaute loading; and RNA decay. Non-canonical pathways for miRNA biogenesis, including those that are independent of Drosha or Dicer, are also emerging.
    Nature Reviews Molecular Cell Biology 07/2014; · 37.16 Impact Factor


Available from
May 31, 2014