Global Methylation Patterns in Idiopathic Pulmonary Fibrosis

Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America.
PLoS ONE (Impact Factor: 3.53). 04/2012; 7(4):e33770. DOI: 10.1371/journal.pone.0033770
Source: PubMed

ABSTRACT Idiopathic Pulmonary Fibrosis (IPF) is characterized by profound changes in the lung phenotype including excessive extracellular matrix deposition, myofibroblast foci, alveolar epithelial cell hyperplasia and extensive remodeling. The role of epigenetic changes in determining the lung phenotype in IPF is unknown. In this study we determine whether IPF lungs exhibit an altered global methylation profile.
Immunoprecipitated methylated DNA from 12 IPF lungs, 10 lung adenocarcinomas and 10 normal histology lungs was hybridized to Agilent human CpG Islands Microarrays and data analysis was performed using BRB-Array Tools and DAVID Bioinformatics Resources software packages. Array results were validated using the EpiTYPER MassARRAY platform for 3 CpG islands. 625 CpG islands were differentially methylated between IPF and control lungs with an estimated False Discovery Rate less than 5%. The genes associated with the differentially methylated CpG islands are involved in regulation of apoptosis, morphogenesis and cellular biosynthetic processes. The expression of three genes (STK17B, STK3 and HIST1H2AH) with hypomethylated promoters was increased in IPF lungs. Comparison of IPF methylation patterns to lung cancer or control samples, revealed that IPF lungs display an intermediate methylation profile, partly similar to lung cancer and partly similar to control with 402 differentially methylated CpG islands overlapping between IPF and cancer. Despite their similarity to cancer, IPF lungs did not exhibit hypomethylation of long interspersed nuclear element 1 (LINE-1) retrotransposon while lung cancer samples did, suggesting that the global hypomethylation observed in cancer was not typical of IPF.
Our results provide evidence that epigenetic changes in IPF are widespread and potentially important. The partial similarity to cancer may signify similar pathogenetic mechanisms while the differences constitute IPF or cancer specific changes. Elucidating the role of these specific changes will potentially allow better understanding of the pathogenesis of IPF.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Idiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disorder with no effective treatment and a prognosis worse than that of lung cancer. Despite extensive research efforts, its etiology and pathogenesis still remain largely unknown. Current experimental evidence has shifted the disease paradigm from chronic inflammation towards the premise of abnormal epithelial wound repair in response to repeated epigenetic injurious stimuli in genetically predisposed individuals. Epigenetics is defined as the study of heritable changes in gene function by factors other than an individual's DNA sequence, providing valuable information regarding adaption of genes to environmental changes. Although cancer is the most studied disease with relevance to epigenetic modifications, recent data support the idea that epigenomic alterations may lead to variable disease phenotypes, including fibroproliferative lung disorders such as IPF. This review article summarizes the latest experimental and translational epigenetic studies in the research field of chronic lung disorders, mainly focusing on IPF, highlights current methodology limitations, and underlines future directions and perspectives.
    Biochemistry and Cell Biology 01/2015; DOI:10.1139/bcb-2014-0126 · 2.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal scarring lung disease of unknown etiology, characterized by changes in microRNA expression. Activation of transforming growth factor (TGF-β) is a key event in the development of IPF. Recent reports have also identified epigenetic modification as an important player in the pathogenesis of IPF. In this review, we summarize the main results of studies that address the role of microRNAs in IPF and highlight the synergistic actions of these microRNAs in regulating TGF-β, the primary fibrogenic mediator. We outline epigenetic regulation of microRNAs by methylation. Functional studies identify microRNAs that alter proliferative and migratory properties of fibroblasts, and induce phenotypic changes in epithelial cells consistent with epithelial-mesenchymal transition. Though these studies were performed in isolation, we identify multiple co-operative actions after assembling the results into a network. Construction of such networks will help identify disease-propelling hubs that can be targeted for therapeutic purposes.
    Biochemistry and Cell Biology 01/2015; DOI:10.1139/bcb-2014-0101 · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aging of the population in the US and throughout the developed world has increased morbidity and mortality attributable to lung disease, while the morbidity and mortality from other prevalent diseases has declined or remained stable. Recognizing the importance of aging in the development of lung disease, the American Thoracic Society (ATS) highlighted this topic as a core theme for the 2014 annual meeting. The relationship between aging and lung disease was discussed in several oral symposiums and poster sessions at the annual ATS meeting. In this article, we used the input gathered the conference to develop a broad framework and perspective to stimulate basic, clinical and translational research to understand how the aging process contributes to the onset and/or progression of lung diseases. A consistent theme that emerged from the conference was the need to apply novel, systems-based approaches to integrate a growing body of genomic, epigenomic, transcriptomic and proteomic data, and elucidate the relationship between biologic hallmarks of aging, altered lung function and increased susceptibility to lung diseases in the older population. The challenge remains to causally link the molecular and cellular changes of aging with age-related changes in lung physiology and disease susceptibility. The purpose of this review is to stimulate further research to identifying new strategies to prevent or treat age-related lung disease.
    American Journal of Respiratory and Critical Care Medicine 01/2015; 191(3). DOI:10.1164/rccm.201410-1876PP · 11.99 Impact Factor

Full-text (4 Sources)

Available from
May 26, 2014