Membrane Association of the PTEN Tumor Suppressor: Molecular Details of the Protein-Membrane Complex from SPR Binding Studies and Neutron Reflection

Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.
PLoS ONE (Impact Factor: 3.23). 04/2012; 7(4):e32591. DOI: 10.1371/journal.pone.0032591
Source: PubMed


The structure and function of the PTEN phosphatase is investigated by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P(2)) act pronouncedly synergistic in pulling the enzyme to the membrane surface. The equilibrium dissociation constants for the binding of wild type (wt) PTEN to PS and PI(4,5)P(2) were determined to be K(d)∼12 µM and 0.4 µM, respectively, and K(d)∼50 nM if both lipids are present. Membrane affinities depend critically on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P(2). The PTEN mutations C124S and H93R show binding affinities that deviate strongly from those measured for the wt protein. Both mutants bind PS more strongly than wt PTEN. While C124S PTEN has at least the same affinity to PI(4,5)P(2) and an increased apparent affinity to PI(3,4,5)P(3), due to its lack of catalytic activity, H93R PTEN shows a decreased affinity to PI(4,5)P(2) and no synergy in its binding with PS and PI(4,5)P(2). Neutron reflection measurements show that the PTEN phosphatase "scoots" along the membrane surface (penetration <5 Å) but binds the membrane tightly with its two major domains, the C2 and phosphatase domains, as suggested by the crystal structure. The regulatory C-terminal tail is most likely displaced from the membrane and organized on the far side of the protein, ∼60 Å away from the bilayer surface, in a rather compact structure. The combination of binding studies and neutron reflection allows us to distinguish between PTEN mutant proteins and ultimately may identify the structural features required for membrane binding and activation of PTEN.

Download full-text


Available from: Mathias Lösche, Apr 23, 2014
    • "10.1016/j.str.2015.07.012 in particular, phosphorylation of the C-terminal tail affects PTEN membrane localization (Rahdar et al., 2009). While other post-translational modifiers may affect PTEN membrane binding (Huang et al., 2012), we showed that bacterially expressed PTEN binds lipid membranes in vitro with high affinity and a strong dependence on lipid composition (Shenoy et al., 2012b). "
    [Show abstract] [Hide abstract]
    ABSTRACT: As the phosphoinositol-3-kinase antagonist in the PI3K pathway, the PTEN tumor suppressor exerts phosphatase activity on diacylphosphatidylinositol triphosphate in the plasma membrane. Even partial loss of this activity enhances tumorigenesis, but a mechanistic basis for this aspect of PTEN physiology has not yet been established. It was recently proposed that PTEN mutations have dominant-negative effects in cancer via PTEN dimers. We show that PTEN forms homodimers in vitro, and determine a structural model of the complex from SAXS and Rosetta docking studies. Our findings shed new light on the cellular control mechanism of PTEN activity. Phosphorylation of the unstructured C-terminal tail of PTEN reduces PTEN activity, and this result was interpreted as a blockage of the PTEN membrane binding interface through this tail. The results presented here instead suggest that the C-terminal tail functions in stabilizing the homodimer, and that tail phosphorylation interferes with this stabilization. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Structure 08/2015; 23(10). DOI:10.1016/j.str.2015.07.012 · 5.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vesicle adhesion and fusion to interfaces are frequently used for the construction of biomimetic surfaces in biosensors and drug delivery. Ubiquitous in cell biology, vesicle fusion involves the transformation of two separate membranes into one contiguous lipid bilayer. In distinction, the deposition of vesicle membranes to hydrophobic surfaces requires the transformation of a lipidic bilayer into a monomolecular layer – a topologically distinct process termed hemifusion. Here, we used hydrophobically terminated self-assembled monolayers (SAMs) on solid surfaces to track the hemifusion of fluorescently labeled giant unilamellar vesicles (GUVs) at the single vesicle level with video time resolution (≈53 ms). We observed that a dilute monolayer, consisting of lipid extracted from the outer GUV leaflet, spreads outward across the hydrophobic surface from the vesicle adhesion site. Subsequently, bilayer hemifusion occurs by vesicle rupture near the hydrophobic surface, followed by spreading of lipid in a dense monolayer. GUV lipids thus transfer to the SAM surface in two concentric zones: an outer hemifusion zone comprises lipids drawn from the outer GUV leaflet and an inner hemifusion zone comprises lipids from both the inner and outer GUV leaflets and grows at a rate of ≈1000 μm2 s−1 (dA/dt = 970 ± 430 μm2 s−1 in n = 22 independent experiments). This growth rate is quantitatively consistent with the assumption that the spreading of the monolayer is entirely driven by the difference in surface energies of the hydrophobic and the lipid-covered SAM surfaces, which is dissipated by friction of the spreading monolayer on the SAM. Lipid transfer between the inner and outer GUV leaflets occurs via a hemifusion pore that forms early in the process near the membrane contact site. This pore also permits expulsion of water from the GUV interior as the vesicle contracts onto the contact site.
    Soft Matter 10/2012; 8(42):10877-10886. DOI:10.1039/C2SM25702E · 4.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The phosphatidylinositolphosphate phosphatase PTEN is the second most frequently mutated protein in human tumors. Its membrane association, allosteric activation and membrane dissociation are poorly understood. We recently reported PTEN binding affinities to membranes of different compositions (Shenoy et al., 2012, PLoS ONE 7, e32591) and a preliminary investigation of the protein-membrane complex with neutron reflectometry (NR). Here we use NR to validate molecular dynamics (MD) simulations of the protein and study conformational differences of the protein in solution and on anionic membranes. NR shows that full-length PTEN binds to such membranes roughly in the conformation and orientation suggested by the crystal structure of a truncated PTEN protein, in contrast with a recently presented model which suggested that membrane binding depends critically on the SUMOylation of the CBR3 loop of PTEN's C2 domain. Our MD simulations confirm that PTEN is peripherally bound to the bilayer surface and show slight differences of the protein structure in solution and in the membrane-bound state, where the protein body flattens against the bilayer surface. PTEN's C2 domain binds phosphatidylserine (PS) tightly through its CBR3 loop, and its phosphatase domain also forms electrostatic interactions with PS. NR and MD results show consistently that PTEN's unstructured, anionic C-terminal tail is repelled from the bilayer surface. In contrast, this tail is tightly tugged against the C2 domain in solution, partially obstructing the membrane-binding interface of the protein. Arresting the C-terminal tail in this conformation by phosphorylation may provide a control mechanism for PTEN's membrane binding and activity.
    Journal of Structural Biology 10/2012; 180(3). DOI:10.1016/j.jsb.2012.10.003 · 3.23 Impact Factor
Show more