Article

Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells.

Department of Cell Biology, Barcelona Institute of Molecular Biology, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
The Journal of clinical investigation (Impact Factor: 13.77). 04/2012; 122(5):1849-68. DOI: 10.1172/JCI59218
Source: PubMed

ABSTRACT Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs.

1 Follower
 · 
187 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is increasing interest in circulating tumor cells (CTCs) due to their purported role in breast cancer metastasis, and their potential as a "liquid biopsy" tool in breast cancer diagnosis and management. There are, however, questions with regards to the reliability and consistency of CTC detection and to the relationship between CTCs and prognosis, which is limiting their clinical utility. There is increasing acceptance that the ability of CTCs to alter from an epithelial to mesenchymal phenotype plays an important role in determining the metastatic potential of these cells. This review examines the phenotypic and genetic variation, which has been reported within CTC populations. Importantly, we discuss how the detection and characterization of CTCs provides additional and often differing information from that obtained from the primary tumor, and how this may be utilized in determining prognosis and treatment options. It has been shown for example that hormone receptor status often differs between the primary tumor and CTCs, which may help to explain failure of endocrine treatment. We examine how CTC status may introduce alternative treatment options and also how they may be used to monitor treatment. Finally, we discuss the most interesting current clinical trials involving CTC analysis and note further research that is required before the breast cancer "liquid biopsy" can be realized.
    Frontiers in Oncology 02/2015; 5:42. DOI:10.3389/fonc.2015.00042
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The endoplasmic reticulum (ER) protein 29 (ERp29) is a molecular chaperone that plays a critical role in protein secretion from the ER in eukaryotic cells. Recent studies have also shown that ERp29 plays a role in cancer. It has been demonstrated that ERp29 is inversely associated with primary tumor development and functions as a tumor suppressor by inducing cell growth arrest in breast cancer. However, ERp29 has also been reported to promote epithelial cell morphogenesis, cell survival against genotoxic stress and distant metastasis. In this review, we summarize the current understanding on the biological and pathological functions of ERp29 in cancer and discuss the pivotal aspects of ERp29 as “friend or foe” in epithelial cancer.
    01/2015; 16. DOI:10.1016/j.fob.2015.01.004
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Twist1 promotes epithelial-to-mesenchymal transition (EMT), invasion, metastasis, and cancer stem cell (CSC) properties. However, it remains unclear whether Twist1 is also required for tumor initiation and whether Twist1-induced cancer stemness and EMT are functionally linked. Using a conditional deletion of Twist1 at different stages of skin carcinogenesis, we show that Twist1 is required for skin tumor initiation and progression in a gene-dosage-dependent manner. Moreover, conditional ablation of Twist1 in benign tumors leads to increased apoptosis, reduced cell proliferation, and defective tumor maintenance and propagation independently of its EMT-inducing abilities. Concomitant deletion of Twist1 and p53 rescues the apoptotic response, but not the cell proliferation and propagation defects. These results reveal that Twist1 is required for tumor initiation and maintenance in a p53-dependent and -independent manner. Importantly, our findings also indicate that tumor stemness and EMT can be regulated by distinct mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell Stem Cell 01/2015; 16(1):67-79. DOI:10.1016/j.stem.2014.12.002 · 22.15 Impact Factor

Full-text

Download
44 Downloads
Available from
Jun 1, 2014