Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells.

Department of Cell Biology, Barcelona Institute of Molecular Biology, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
The Journal of clinical investigation (Impact Factor: 13.77). 04/2012; 122(5):1849-68. DOI: 10.1172/JCI59218
Source: PubMed

ABSTRACT Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs.

Download full-text


Available from: Toni Celià-Terrassa, Jul 01, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer metastasis is the main cause of cancer-related death, and dissemination of tumor cells through the blood circulation is an important intermediate step that also exemplifies the switch from localized to systemic disease. Early detection and characterization of circulating tumor cells (CTCs) is therefore important as a general strategy to monitor and prevent the development of overt metastatic disease. Furthermore, sequential analysis of CTCs can provide clinically relevant information on the effectiveness and progression of systemic therapies (e.g., chemo-, hormonal, or targeted therapies with antibodies or small inhibitors). Although many advances have been made regarding the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this important diagnostic approach. In this review, we discuss the biology of tumor cell dissemination, technical advances, as well as the challenges and potential clinical implications of CTC detection and characterization.
    EMBO Molecular Medicine 11/2014; 7(1). DOI:10.15252/emmm.201303698 · 8.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor cell plasticity is an event that has been observed in several malignancies. In fact, most of the solid tumors are characterized by cellular heterogeneity and undergo constant changes as the tumor develops. The increased plasticity displayed by these cells allows them to acquire additional properties, enabling epithelial-mesenchymal transitions, dedifferentiation and the acquisition of stem cell-like properties. Here we discuss the particular importance of an inflammatory microenvironment for the bidirectional control of cellular plasticity and the potential for therapeutic intervention.
    FEBS letters 06/2014; DOI:10.1016/j.febslet.2014.06.019 · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocellular carcinoma (HCC) cells undergo the epithelial-mesenchymal transition (EMT) during chemotherapy, which reduces the efficacy of doxorubicin-based chemotherapy. We investigated N1-guanyl-1,7-diaminoheptane (GC7) which inhibits eukaryotic translation initiation factor 5A2 (eIF5A2) activation; eIF5A2 is associated with chemoresistance. GC7 enhanced doxorubicin cytotoxicity in epithelial HCC cells (Huh7, Hep3B and HepG2) but had little effect in mesenchymal HCC cells (SNU387, SNU449). GC7 suppressed the doxorubicin-induced EMT in epithelial HCC cells; knockdown of eIF5A2 inhibited the doxorubicin-induced EMT and enhanced doxorubicin cytotoxicity. GC7 combination therapy may enhance the therapeutic efficacy of doxorubicin in HCC by inhibiting eIF5A2 activation and preventing the EMT.
    Experimental Cell Research 08/2013; 319(17). DOI:10.1016/j.yexcr.2013.08.010 · 3.37 Impact Factor