Article

Lack of "immunological fitness" during fasting in metabolically challenged animals.

Touchstone Diabetes Center, Departments of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, TX 75390, USA.
The Journal of Lipid Research (Impact Factor: 4.73). 04/2012; 53(7):1254-67. DOI: 10.1194/jlr.M021725
Source: PubMed

ABSTRACT Subclinical inflammation is frequently associated with obesity. Here, we aim to better define the acute inflammatory response during fasting. To do so, we analyzed representatives of immune-related proteins in circulation and in tissues as potential markers for adipose tissue inflammation and modulation of the immune system. Lipopolysaccharide treatment or high-fat diet led to an increase in circulating serum amyloid (SAA) and α1-acid glycoprotein (AGP), whereas adipsin levels were reduced. Mouse models that are protected against diet-induced challenges, such as adiponectin-overexpressing animals or mice treated with PPARγ agonists, displayed lower SAA levels and higher adip-sin levels. An oral lipid gavage, as well as prolonged fasting, increased circulating SAA concurrent with the elevation of free FA levels. Moreover, prolonged fasting was associated with an increased number of Mac2-positive crown-like structures, an increased capillary permeability, and an increase in several M2-type macrophage markers in adipose tissue. This fasting-induced increase in SAA and M2-type macrophage markers was impaired in metabolically challenged animals. These data suggest that metabolic inflexibility is associated with a lack of "immunological fitness."

0 Followers
 · 
97 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Almost 20 years have passed since the first laboratory evidence emerged that an abundant message encoding a protein with homology to the C1q superfamily is highly specifically expressed in adipocytes. At this stage, we refer to this protein as adiponectin. Despite more than 10,000 reports in the literature since its initial description, we seem to have written only the first chapter in the textbook on adiponectin physiology. With every new aspect we learn about adiponectin, a host of new questions arise with respect to the underlying molecular mechanisms. Here, we aim to summarize recent findings in the field and bring the rodent studies that suggest a causal relationship between adiponectin levels in plasma and systemic insulin sensitivity in perspective with the currently available data on the clinical side.
    08/2013; 2(3):133-141. DOI:10.1016/j.molmet.2013.04.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms underlying the relationships between nutritional status and immunity remain to be fully characterized. The present study was undertaken to analyze by flow cytometry, in the context of diet-induced obesity, the status of immune cells in subcutaneous, and epididymal fat depots in wild-type and immunodeficient Rag2-/- mice submitted to nutritional challenge, i.e., 48-h fasting and 1-week refeeding. In parallel, the responsiveness of mature adipocytes and immune cells in bone marrow, lymph node, and liver were also analyzed. The results show that fasting in obese wild-type mice induces a prominent lipolysis in epididymal AT and immunosuppression restricted to both subcutaneous and epididymal AT, characterized by reduced number of CD4+ T and B lymphocytes and M1/M2 macrophages associated with reduced leptin and increased FGF21 expression in mature adipocytes. One-week refeeding was sufficient to reverse the fasting-induced effects. Obese immunodeficient mice under nutritional challenge exhibited no changes in adipocyte leptin expression and no marked trafficking of AT macrophages or NK cells, while the fasted-induced upregulation of FGF21 expression was maintained as well as the lipolytic responses. The present results demonstrate that, in a context of diet-induced obesity, fasting-induced immunosuppression is restricted to fat depots in immunocompetent mice. Lack of adipocyte leptin regulation and fasting-induced immunosuppression in obese immunodeficient mice strongly suggests that lymphocytes are involved in the modulation of adipocyte leptin expression on one hand and on the other that leptin is involved in the immune changes in AT according to nutritional status.
    Journal of physiology and biochemistry 02/2015; DOI:10.1007/s13105-015-0388-x · 2.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Normal energy metabolism is characterized by periodic shifts in glucose and fat oxidation, as the mitochondrial machinery responsible for carbon combustion switches freely between alternative fuels according to physiological and nutritional circumstances. These transitions in fuel choice are orchestrated by an intricate network of metabolic and cell signaling events that enable exquisite crosstalk and cooperation between competing substrates to maintain energy and glucose homeostasis. By contrast, obesity-related cardiometabolic diseases are increasingly recognized as disorders of metabolic inflexibility, in which nutrient overload and heightened substrate competition result in mitochondrial indecision, impaired fuel switching, and energy dysregulation. This Perspective offers a speculative view on the molecular origins and pathophysiological consequences of metabolic inflexibility. Copyright © 2014 Elsevier Inc. All rights reserved.
    Cell 12/2014; 159(6):1253-1262. DOI:10.1016/j.cell.2014.11.034 · 33.12 Impact Factor