Article

In Vitro Functional and Immunomodulatory Properties of the Lactobacillus helveticus MIMLh5-Streptococcus salivarius ST3 Association That Are Relevant to the Development of a Pharyngeal Probiotic Product

Department of Food Science and Microbiology, Università degli Studi di Milano, Milan, Italy.
Applied and Environmental Microbiology (Impact Factor: 3.95). 04/2012; 78(12):4209-16. DOI: 10.1128/AEM.00325-12
Source: PubMed

ABSTRACT The use of proper bacterial strains as probiotics for the pharyngeal mucosa is a potential prophylactic strategy for upper respiratory tract infections. In this context, we characterized in vitro the functional and immunomodulatory properties of the strains Lactobacillus helveticus MIMLh5 and Streptococcus salivarius ST3 that were selected during previous investigations as promising pharyngeal probiotics. In this study, we demonstrated in vitro that strains MIMLh5 and ST3, alone and in combination, can efficiently adhere to pharyngeal epithelial cells, antagonize Streptococcus pyogenes, and modulate host innate immunity by inducing potentially protective effects. In particular, we found that the strains MIMLh5 and ST3 activate U937 human macrophages by significantly inducing the expression of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). Nonetheless, the induction of the anti-inflammatory interleukin-10 (IL-10) by MIMLh5 or ST3 was never lower than that of TNF-α, suggesting that these bacteria can potentially exert a regulatory rather than a proinflammatory effect. We also found that the strains MIMLh5 and ST3 induce cyclooxygenase 2 (COX-2) expression and demonstrated that toll-like receptor 2 (TLR-2) participates in the recognition of the strains MIMLh5 and ST3 by U937 cells. Finally, we observed that these microorganisms grow efficiently when cocultured in milk, suggesting that the preparation of a milk-based fermented product containing both MIMLh5 and ST3 can be a practical solution for the administration of these bacteria. In conclusion, we propose the combined use of L. helveticus MIMLh5 and S. salivarius ST3 for the preparation of novel products that display probiotic properties for the pharyngeal mucosa.

Full-text

Available from: Matti Karp, Jun 03, 2015
0 Followers
 · 
128 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The evaluation of the impact of probiotics on host health could help to understand how they can be used in the prevention of diseases. On the basis of our previous studies and in vitro assays on PBMC and Caco-2 ccl20:luc reporter system presented in this work, the strain Lactobacillus kefiri CIDCA 8348 was selected and administrated to healthy Swiss mice daily for 21 days. The probiotic treatment increased IgA in feces and reduced expression of proinflammatory mediators in Peyer Patches and mesenteric lymph nodes, where it also increased IL-10. In ileum IL-10, CXCL-1 and mucin 6 genes were upregulated; meanwhile in colon mucin 4 was induced whereas IFN-íµí»¾, GM-CSF, and IL-1íµí»½ genes were downregulated. Moreover, ileum and colon explants showed the anti-inflammatory effect of L. kefiri since the LPS-induced increment of IL-6 and GM-CSF levels in control mice was significantly attenuated in L. kefiri treated mice. Regarding fecal microbiota, DGGE profiles allowed differentiation of experimental groups in two separated clusters. Quantitative PCR analysis of different bacterial groups revealed only significant changes in Lactobacillus population. In conclusion, L. kefiri is a good candidate to be used in gut inflammatory disorders.
    Journal of Immunology Research 11/2014; 2015. DOI:10.1155/2015/361604 · 2.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Single chain variable fragment antibodies (scFvs) have considerable potential in immunological detection and localization of bacterial surface structures. In this study, synthetic phage displayed antibody libraries were used to select scFvs against immunologically active S-layer protein of Lactobacillus helveticus MIMLh5. After three rounds of panning, five relevant phage clones were obtained, of which four were specific for the S-layer protein of L. helveticus MIMLh5 and one was capable of binding also the S-layer protein of L. helveticus ATCC 15009. All five anti-S-layer scFvs were expressed in Escherichia coli XL1-Blue and their specificity profiles were characterized by Western blotting. The anti-S-layer scFv PolyH4, with the highest specificity for the S-layer protein of L. helveticus MIMLh5, was used to detect the S-layer protein in Grana Padano PDO cheese extracts by Western blot. These results showed promising applications of this monoclonal antibody for the detection of immunomodulatory S-layer protein in dairy (based) foods.
    Applied and Environmental Microbiology 11/2013; DOI:10.1128/AEM.03057-13 · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The microbiota of the gastrointestinal tract have profound influence at multiple levels, even on the development and maintenance of lung immunity and inflammation. Aim of this review is to evaluate the current knowledge about the specific impact on children's respiratory tract infections from probiotics, live microbes with the power to modify intestinal microbial populations and exert subsequent benefits for the host. The role of probiotics in gastrointestinal and allergic diseases has been largely assessed, but the number of studies performed so far in the field of respiratory tract infections is small, though some data show that probiotic administration might display clinical advantages. Probiotic strain identity and host genetic differences may account for differential modulation of immune responses by probiotics. Current laboratory and clinical data regarding the possibility of the role of probiotics on preventing the development of respiratory tract infections are contradictory, and are somewhat insufficient to recommend strongly their routine use. Further study of gastrointestinal-respiratory interactions is likely to yield important insights into the pathogenesis of different pulmonary diseases, and improve our knowledge in the prophylactic role of probiotics in children affected by recurrent upper respiratory tract infections. A better understanding of the effects of different probiotic strains and a deeper insight into their mechanisms of action are needed for the validation of specific strains carrying a potential to modify the frequency and severity of RTIs in infants and children. No data have been collected in pediatric patients with chronic underlying diseases, and yet there are no published data concerning treatment of RTIs with probiotics. The very few studies published so far do not indicate which micro-organism or administration regimen might exert beneficial effects as a prevention tool of RTIs both in healthy children and in those with recurrent RTIs. Further research to establish the role of probiotics in the treatment and prevention of RTIs, including those involving the lower respiratory tract, are required and should also clarify if any susceptible subgroups of respiratory diseases exist, and how these subgroups benefit from supplementation with certain probiotic strains.
    BMC Infectious Diseases 04/2014; 14(1):194. DOI:10.1186/1471-2334-14-194 · 2.56 Impact Factor