Article

Dissecting mechanisms of immunodominance to the common tuberculosis antigens ESAT-6, CFP10, Rv2031c (hspX), Rv2654c (TB7.7), and Rv1038c (EsxJ).

Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
The Journal of Immunology (Impact Factor: 5.52). 04/2012; 188(10):5020-31. DOI: 10.4049/jimmunol.1103556
Source: PubMed

ABSTRACT Diagnosis of tuberculosis often relies on the ex vivo IFN-γ release assays QuantiFERON-TB Gold In-Tube and T-SPOT.TB. However, understanding of the immunological mechanisms underlying their diagnostic use is still incomplete. Accordingly, we investigated T cell responses for the TB Ags included in the these assays and other commonly studied Ags: early secreted antigenic target 6 kDa, culture filtrate protein 10 kDa, Rv2031c, Rv2654c, and Rv1038c. PBMC from latently infected individuals were tested in ex vivo ELISPOT assays with overlapping peptides spanning the entirety of these Ags. We found striking variations in prevalence and magnitude of ex vivo reactivity, with culture filtrate protein 10 kDa being most dominant, followed by early secreted antigenic target 6 kDa and Rv2654c being virtually inactive. Rv2031c and Rv1038c were associated with intermediate patterns of reactivity. Further studies showed that low reactivity was not due to lack of HLA binding peptides, and high reactivity was associated with recognition of a few discrete dominant antigenic regions. Different donors recognized the same core sequence in a given epitope. In some cases, the identified epitopes were restricted by a single specific common HLA molecule (selective restriction), whereas in other cases, promiscuous restriction of the same epitope by multiple HLA molecules was apparent. Definition of the specific restricting HLA allowed to produce tetrameric reagents and showed that epitope-specific T cells recognizing either selectively or promiscuously restricted epitopes were predominantly T effector memory. In conclusion, these results highlight the feasibility of more clearly defined TB diagnostic reagent.

0 Bookmarks
 · 
117 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Study of the function of epitopes of Mycobacterium tuberculosis antigens contributed significantly toward better understanding of the immunopathogenesis and to efforts for improving infection and disease control. Characterization of genetically permissively presented immunodominant epitopes has implications for the evolution of the host-parasite relationship, development of immunodiagnostic tests, and subunit prophylactic vaccines. Knowledge of the determinants of cross-sensitization, relevant to other pathogenic or environmental mycobacteria and to host constituents has advanced. Epitope-defined IFNγ assay kits became established for the specific detection of infection with tubercle bacilli both in humans and cattle. The CD4 T-cell epitope repertoire was found to be more narrow in patients with active disease than in latently infected subjects. However, differential diagnosis of active TB could not be made reliably merely on the basis of epitope recognition. The mechanisms by which HLA polymorphism can influence the development of multibacillary tuberculosis (TB) need further analysis of epitopes, recognized by Th2 helper cells for B-cell responses. Future vaccine development would benefit from better definition of protective epitopes and from improved construction and formulation of subunits with enhanced immunogenicity. Epitope-defined serology, due to its operational advantages is suitable for active case finding in selected high disease incidence populations, aiming for an early detection of infectious cases and hence for reducing the transmission of infection. The existing knowledge of HLA class I binding epitopes could be the basis for the construction of T-cell receptor-like ligands for immunotherapeutic application. Continued analysis of the functions of mycobacterial epitopes, recognized by T cells and antibodies, remains a fertile avenue in TB research.
    Frontiers in Immunology 01/2014; 5:107.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We assessed the use of M. bovis-specific peptides for the diagnosis of tuberculosis in African buffaloes (Syncerus caffer) by evaluating the agreement between the single intradermal comparative tuberculin test (SICTT), the Bovigam® EC (BEC) assay, the Bovigam® HP (BHP) assay and 2 assays utilizing the QuantiFERON® TB-Gold (in tube) system employing 20 h (mQFT20 assay) and 30 h (mQFT30 assay) whole blood incubation periods. Of 84 buffaloes, 45% were SICTT-positive, 48% were BEC-positive, 50% were BHP-positive, 37% were mQFT20-positive and 43% were mQFT30-positive. Agreement between the BEC and BHP Bovigam® assays was high (κ=0.86, 95% CI 0.75-0.97) and these detected the most test-positive animals suggesting that they were the most sensitive assays. Interferon-gamma release was significantly greater in buffaloes that were test-positive for all tests than in animals with discordant but positive Bovigam® results. Agreement between the mQFT assays was equally high (κ=0.88, 95% CI 0.77-0.98); however, all buffaloes with discordant mQFT results (n = 6) were mQFT30-positive/mQFT20-negative, including 3 confirmed M. bovis-infected animals, suggesting that the mQFT30 assay is the more sensitive of the two. Agreements between the two Bovigam® and two mQFT assays were moderate, suggesting that in its current format the mQFT assay is less sensitive that either the BEC or BHP assays.
    Veterinary Immunology and Immunopathology 01/2014; · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuberculosis remains a major global health problem worldwide, and hence there is a need for novel vaccines that better induce cellular-mediated immunity (CMI). In search of a better vaccine target, the QuantiFERON-TB Gold In-Tube Test (QFT-GIT) and the interferon-γ ELISPOT assay (ELISPOT) were used to compare the magnitude of CMI in patients. Results of the ELISPOT assay led to the discovery of specific epitopes within the early secreted antigenic target 6 kDa (ESAT-6) and culture filtrate protein 10 kDa (CFP-10) proteins. Both peptides showed a strong association with several HLA class II DRB1 molecules in the Japanese population. Using ESAT-6-specific HLA class II tetramers, we determined that the expression of ESAT-6-specific CD4+ lymphocytes was significantly decreased in treated patients compared with active patients. In addition, programmed death-1 (PD-1)/killer cell lectin-like receptor G1 (KLRG-1) double positive cells were found only in treated patients and not in those with active TB. These data could provide clues for the development of novel tuberculosis vaccines.
    Journal of immunology research. 01/2014; 2014:764028.

Full-text (2 Sources)

View
20 Downloads
Available from
May 27, 2014