Subcallosal brain structure: Correlation with hearing threshold at supra-clinical frequencies (>8 kHz), but not with tinnitus.

Dept. of Otology and Laryngology, Harvard Medical School, Boston MA, USA; Dept. of Otolaryngology, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston MA, USA; Speech and Hearing Bioscience and Technology Program, Harvard-MIT Division of Health Sciences and Technology, Boston MA, USA.
Hearing research (Impact Factor: 2.18). 04/2012; DOI: 10.1016/j.heares.2012.03.013
Source: PubMed

ABSTRACT This study tested for differences in brain structure between tinnitus and control subjects, focusing on a subcallosal brain region where striking differences have been inconsistently found previously. Voxel-based morphometry (VBM) was used to compare structural MRIs of tinnitus subjects and non-tinnitus controls. Audiograms of all subjects were normal or near-normal at standard clinical frequencies (≤8 kHz). Mean threshold through 14 kHz, age, sex and handedness were matched between groups. There were no definitive differences between tinnitus and control groups in modulated or unmodulated maps of gray matter (GM) probability (i.e., GM volume and concentration, respectively). However, when the image data were tested for correlations with parameters that were either not measured or not matched between the tinnitus and control groups of previous studies, a notable correlation was found: Threshold at supra-clinical frequencies (above 8 kHz) was negatively correlated with modulated GM probability in ventral posterior cingulate cortex, dorsomedial prefrontal cortex, and a subcallosal region that included ventromedial prefrontal cortex and coincided with previously-reported differences between tinnitus and control subjects. The results suggest an explanation for the discrepant findings in subcallosal brain: threshold at supra-clinical frequencies may have differed systematically between tinnitus and control groups in some studies but not others. The observed correlation between (1) brain structure in regions engaged in cognitive and attentional processes and (2) hearing sensitivity at frequencies generally considered unnecessary for normal human auditory behavior is surprising and worthy of follow up.

  • Brain Structure and Function 05/2013; · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Repetitive transcranial magnetic stimulation (rTMS) of the temporal cortex has been used to treat patients with subjective tinnitus. While rTMS is known to induce morphological changes in healthy subjects, no study has investigated yet whether rTMS treatment induces grey matter (GM) changes in tinnitus patients as well, whether these changes are correlated with treatment success, and whether GM at baseline is a useful predictor for treatment outcome. Therefore, we examined magnetic resonance images of 77 tinnitus patients who were treated with rTMS of the left temporal cortex (10 days, 2000 stimuli/day, 1 Hz). At baseline and after the last treatment session high-resolution structural images of the brain were acquired and tinnitus severity was assessed. For a subgroup of 41 patients, additional brain scans were done after a follow-up period of 90 days. GM changes were analysed by means of voxel based morphometry. Transient GM decreases were detectable in several brain regions, especially in the insula and the inferior frontal cortex. These changes were not related to treatment outcome though. Baseline images correlated with change in tinnitus severity in the frontal cortex and the lingual gyrus, suggesting that GM at baseline might hold potential as a possible predictor for treatment outcome.
    Neural Plasticity 01/2014; 2014:132058. · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Resting-state functional magnetic resonance imaging (fMRI) uncovers correlated activity between spatially distinct functionally related brain regions and offers clues about the integrity of functional brain circuits in people with chronic subjective tinnitus. We chose to investigate auditory network connectivity, adopting and extending previously used analyses methods to provide an independent evaluation of replicability. Design: Independent components analysis (ICA) was used to identify coherent patterns arising from spontaneous brain signals within the resting-state data. The auditory network component was extracted and evaluated. Bivariate and partial correlation analyses were performed on pre-defined regions of bilateral auditory cortex to assess functional connectivity. Study sample: Our design carefully matched participant groups for possible confounds, such as hearing status. Twelve patients (seven male, five female; mean age 66 years) all with chronic constant tinnitus and eleven controls (eight male, three female; mean age 68 years) took part. Results: No significant differences were found in auditory network connectivity between groups after correcting for multiple statistical comparisons in the analysis. This contradicts previous findings reporting reduced auditory network connectivity; albeit at a less stringent statistical threshold. Conclusions: Auditory network connectivity does not appear to be reliably altered by the experience of chronic subjective tinnitus.
    International journal of audiology 11/2013; · 1.34 Impact Factor