Article

p75 neurotrophin receptor signaling in nervous system injury and degeneration: paradox and opportunity.

Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
Trends in Neurosciences (Impact Factor: 13.58). 04/2012; 35(7):431-40. DOI: 10.1016/j.tins.2012.03.007
Source: PubMed

ABSTRACT Injury or insult to the adult nervous system often results in reactivation of signaling pathways that are normally only active during development. The p75 neurotrophin receptor (p75(NTR)) is one such signaling molecule whose expression increases markedly following neural injury in many of the same cell types that express p75(NTR) during development. A series of studies during the past decade has demonstrated that p75(NTR) signaling contributes to neuronal and glial cell damage, axonal degeneration and dysfunction during injury and cellular stress. Why the nervous system reacts to injury by inducing a molecule that aids the demise of cells and axons is a biological paradox that remains to be explained satisfactorily. On the other hand, it may offer unique therapeutic opportunities for limiting the severity of nervous system injury and disease.

0 Bookmarks
 · 
139 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell-based therapies offer promise for patients with Parkinson's disease (PD); however, durable and effective transplantation substrates need to be defined. This study characterized the feasibility and growth properties of primary cultures established from small-volume brain biopsies taken during deep brain stimulation (DBS) surgery in patients with PD. The lineage and expression of neurotrophic factors with known beneficial actions in PD-affected brain circuitry were also evaluated. Nineteen patients with PD undergoing DBS surgery consented to brain biopsies prior to electrode implantation. Cultures from these samples exhibited exponential and plateau phases of growth and were readily expanded throughout multiple passages. There was robust expression of progenitor markers and the unexpected colocalization of neural and mesenchymal proteins. The oligodendrocyte transcription factor, Olig1, and the myelin-specific sphingolipid, galactocerebroside, were coexpressed with each of glial-derived neurotrophic factor, brain-derived neurotrophic factor, and cerebral dopamine neurotrophic factor. Fluorescence-activated cell sorting demonstrated homogeneous expression of both nestin and Olig1 throughout the expanded cultures. Cells remained viable after a year in cryostorage. These findings confirm the feasibility of small brain biopsies as an expandable source of autologous cell substrate in living patients and demonstrate the complex phenotype of these cells, with implications for therapeutic application in PD and other neurological diseases.- Xu, H., Belkacemi, L., Jog, M., Parrent, A., Hebb. M. O. Neurotrophic factor expression in expandable cell populations from brain samples in living patients with Parkinson's disease.
    The FASEB Journal 07/2013; · 5.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The p75 neurotrophin receptor (p75(NTR)) is associated with multiple mechanisms linked to Alzheimer's disease (AD); hence, modulating its function might confer therapeutic effects. In previous in vitro work, we developed small molecule p75(NTR) ligands that inhibited amyloid-β-induced degenerative signaling and prevented neurite degeneration. In the present study, a prototype p75(NTR) ligand, LM11A-31, was administered orally to the Thy-1 hAPP(Lond/Swe) (APP(L/S)) AD mouse model. LM11A-31 reached brain concentrations known to inhibit degenerative signaling without toxicity or induction of hyperalgesia. It prevented deficits in novel object recognition after 2.5 months and, in a separate cohort, deficits in Y-maze performance after 3 months of treatment. Stereology studies found that the number and size of basal forebrain cholinergic neurons, which are normal in APP(L/S) mice, were unaffected. Neuritic dystrophy, however, was readily apparent in the basal forebrain, hippocampus and cortex, and was significantly reduced by LM11A-31, with no effect on amyloid levels. These studies reveal that p75(NTR) is an important and tractable in vivo drug target for AD, with LM11A-31 representing a novel class of therapeutic candidates.
    Neurobiology of aging 03/2013; · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Royal College of Surgeons (RCS) rats develop vasculopathy as photoreceptors degenerate. The aim of this study was to examine the effect of erythropoietin (EPO) on retinopathy in RCS rats.
    PLoS ONE 01/2014; 9(8):e104759. · 3.53 Impact Factor