Iron phthalocyanine/TiO2 nanofiber heterostructures with enhanced visible photocatalytic activity assisted with H2O2

Department of Chemistry, Northeast Normal University, Changchun, People's Republic of China.
Journal of hazardous materials (Impact Factor: 4.33). 04/2012; 219-220:156-63. DOI: 10.1016/j.jhazmat.2012.03.068
Source: PubMed

ABSTRACT One-dimensional 2,9,16,23-tetra-nitrophthalocyanine iron(II) (TNFePc)/TiO(2) nanofiber heterostructures have been successfully obtained by a simple combination of electrospinning technique and solvothermal process. The as-obtained products were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and IR spectrum. The results revealed that the TNFePc nanosheets were successfully grown on the primary TiO(2) nanofibers. And, the coverage density of the secondary TNFePc nanostructures could be controlled by adjusting the experimental parameters. Photocatalytic tests displayed that the H(2)O(2) assisted TNFePc/TiO(2) nanofiber heterostructures (TNFePc/TiO(2)-H(2)O(2)) possessed a much higher degradation rate of methyl orange than the pure TiO(2) and TNFePc/TiO(2) nanofiber without H(2)O(2) under visible light. Moreover, the TNFePc/TiO(2) nanofiber heterostructures could be easily recycled without the decrease of the photocatalytic activity due to their one-dimensional nanostructural property of TiO(2) nanofibers.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: h i g h l i g h t s • Remediation of two polluted soils from a highly contaminated industrial site in Italy. • Restoration of soil quality by introducing additional carbon into polluted soil with humic matter amendments. • Detoxification of contaminants by covalent binding to humic molecules. • Prevention of environmental transport of pollutants. a b s t r a c t Remediation of two polluted soils from a northern Italian industrial site heavily contaminated with organic contaminants was attempted here by subjecting soils first to addition with an exogenous humic acid (HA), and, then, to an oxidation reaction catalyzed by a water-soluble iron-porphyrin (FeP). An expected decrease of detectable organic pollutants (>50%) was already observed when soils were treated only with the H 2 O 2 oxidant. This reduction was substantially enhanced when oxidation was catalyzed by iron-porphyrin (FeP + H 2 O 2) and the largest effect was observed for the most highly polluted soil. Even more significant was the decrease in detectable pollutants (70–90%) when soils were first amended with HA and then subjected to the FeP + H 2 O 2 treatment. This reduction in extractable pollutants after the combined HA + FeP + H 2 O 2 treatment was due to formation of covalent C C and C O C bonds between soil contaminants and amended humic molecules. Moreover, the concomitant detection of condensation products in soil extracts following FeP addition confirmed the occurrence of free-radical coupling reac-tions catalyzed by FeP. These findings indicate that a combined technique based on the action of both humic matter and a metal-porhyrin catalyst, may become useful to quantitatively reduce the toxicity of heavily contaminated soils and prevent the environmental transport of pollutants.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cobalt(II) phthalocyanine-sensitized hollow Fe3O4@SiO2@TiO2 hierarchical nanostructures had been successfully obtained by combination of solvothermal processing and dipping processing. The as-obtained products were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrum (FT-IR), UV-vis diffuse reflectance (DR) and vibrating sample magnetometer (VSM). The results revealed that the cobalt(II) phthalocyanine was successfully grown on the primary Fe3O4@SiO2@TiO2 nanostructures (Fe3O4@SiO2@TiO2@CoPcS). The hollow Fe3O4@SiO2@TiO2@CoPcS hierarchical nanostructure showed excellent photocatalytic efficiency for the degradation of methylene blue (MB) under UV-vis and visible light irradiation. More importantly, the photocatalyst could be effectively separated for reuse by simply applying an external magnetic field. A possible mechanism for the visible photocatalysis with the Fe3O4@SiO2@TiO2@CoPcS heterostructures was suggested.
    Applied Surface Science 12/2013; 287:389-396. DOI:10.1016/j.apsusc.2013.09.164 · 2.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel versatile photocatalyst, FDU-PdPcS, was prepared by immobilizing palladium phthalocyaninesulfonate (PdPcS) onto the FDU-15 mesopolymer via multi-step chemical modification processes involving chloromethylation of the FDU-15 mesopolymer first with chloromethyl methyl ether, a subsequent amination reaction with ethylenediamine, and finally modification with palladium phthalocyaninesulfonate via ionic interaction. The obtained FDU-PdPcS photocatalyst was characterized by the X-ray diffraction (XRD), UV-Vis spectrosopy and inductively coupled plasma (ICP) techniques. This photocatalyst not only affords a high dispersion of monomeric PdPcS molecules, which may further be stabilized by the pi-electron of benzene rings of FDU-15, but also provides a number of diamino groups inside the mesopores, which could be advantageous for the photodegradation of phenolic pollutants. In photodegradation studies of phenolic pollutants, the FDU-PdPcS catalyst exhibited excellent visible light photocatalytic activity and reusability. The photodegradation products of phenol and bisphenol A were investigated by the gas chromatoghraphy-mass spectrometry (GC-MS) technique. The results showed that the photodegradation products were composed of carboxylic acids and CO2. Isopropanol, sodium azide and benzoquinone were used as hydroxyl radical (OH*), singlet oxygen (1O2) and superoxide radical (O2*-) scavengers, respectively. The results suggested that 1O2 and O2*- were the prominent active species during the photodegradation process. A possible mechanism for the photodegradation of phenol was also discussed.
    Journal of Environmental Sciences 08/2013; 25(8):1687-95. DOI:10.1016/S1001-0742(12)60216-2 · 1.92 Impact Factor