Article

Negative Feedback Enhances Robustness in the Yeast Polarity Establishment Circuit

Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
Cell (Impact Factor: 31.96). 04/2012; 149(2):322-33. DOI: 10.1016/j.cell.2012.03.012
Source: PubMed

ABSTRACT Many cells undergo symmetry-breaking polarization toward a randomly oriented "front" in the absence of spatial cues. In budding yeast, such polarization involves a positive feedback loop that enables amplification of stochastically arising clusters of polarity factors. Previous mathematical modeling suggested that, if more than one cluster were amplified, the clusters would compete for limiting resources and the largest would "win," explaining why yeast cells always make one and only one bud. Here, using imaging with improved spatiotemporal resolution, we show the transient coexistence of multiple clusters during polarity establishment, as predicted by the model. Unexpectedly, we also find that initial polarity factor clustering is oscillatory, revealing the presence of a negative feedback loop that disperses the factors. Mathematical modeling predicts that negative feedback would confer robustness to the polarity circuit and make the kinetics of competition between polarity factor clusters relatively insensitive to polarity factor concentration. These predictions are confirmed experimentally.

0 Bookmarks
 · 
114 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plants, along with other multicellular organisms, have evolved specialized regulatory mechanisms to achieve proper tissue growth and morphogenesis. During development, growing tissues generate specialized cell types and complex patterns necessary for establishing the function of the organ. Tissue growth is a tightly regulated process that yields highly reproducible outcomes. Nevertheless, the underlying cellular and molecular behaviors are often stochastic. Thus, how does stochasticity, together with strict genetic regulation, give rise to reproducible tissue development? This review draws examples from plants as well as other systems to explore stochasticity in plant cell division, growth, and patterning. We conclude that stochasticity is often needed to create small differences between identical cells, which are amplified and stabilized by genetic and mechanical feedback loops to begin cell differentiation. These first few differentiating cells initiate traditional patterning mechanisms to ensure regular development.
    Frontiers in Plant Science 09/2014; 5:420. DOI:10.3389/fpls.2014.00420 · 3.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In a tractable model for cell invasion, the Caenorhabditis elegans anchor cell migrates through basement membranes towards a polarity cue provided by netrin. A new study reveals that the anchor cell polarity network can break symmetry and oscillate in the absence of netrin, suggesting the presence of interlinked positive and negative feedback loops, which are common in polarity pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Current Biology 11/2014; 24(21):R1050-R1052. DOI:10.1016/j.cub.2014.09.042 · 9.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rho GTPases, activated by Rho guanine nucleotide exchange factors (GEFs), are conserved molecular switches for signal transductions that regulate diverse cellular processes including cell polarization and cytokinesis. The fission yeast Schizosaccharomyces pombe has six Rho GTPases (Cdc42 and Rho1-Rho5) and seven Rho GEFs (Scd1, Rgf1-Rgf3, and Gef1-Gef3). The GEFs for Rho2-Rho5 have not been unequivocally assigned. Particularly, Gef3, the smallest Rho GEF, was barely studied. Here we show that Gef3 colocalizes with septins at the cell equator. Gef3 physically interacts with septins and anillin Mid2 and depends on them to localize. Gef3 coprecipitates with GDP-bound Rho4 in vitro and accelerates nucleotide exchange of Rho4, suggesting that Gef3 is a GEF for Rho4. Consistently, Gef3 and Rho4 are in the same genetic pathways to regulate septum formation and/or cell separation. In gef3∆ cells, the localizations of two potential Rho4 effectors, glucanases Eng1 and Agn1, are abnormal; and active Rho4 level is reduced, indicating that Gef3 is involved in Rho4 activation in vivo. Moreover, overexpression of active Rho4 or Eng1 rescues the septation defects of mutants containing gef3∆. Together, our data support that Gef3 interacts with the septin complex and activates Rho4 GTPase as a Rho GEF for septation in fission yeast. © 2014 by The American Society for Cell Biology.
    Molecular Biology of the Cell 11/2014; 26(2). DOI:10.1091/mbc.E14-07-1196 · 4.55 Impact Factor

Full-text (2 Sources)

Download
1 Download
Available from
Feb 25, 2015