Article

Is a malleable protein necessarily highly dynamic? The hydrophobic core of the nuclear coactivator binding domain is well ordered.

Department of Biology, University of Copenhagen, Copenhagen, Denmark.
Biophysical Journal (Impact Factor: 3.67). 04/2012; 102(7):1627-35. DOI: 10.1016/j.bpj.2012.02.014
Source: PubMed

ABSTRACT The nuclear coactivator binding domain of CREB binding protein folds into remarkably different structures in complex with different ligands. To understand the mechanism of the structural adaptability in the nuclear coactivator binding domain (NCBD), we have compared the dynamics of the hydrophobic core of NCBD in the ligand-free state and in a well-folded complex with the ligand activator for thyroid hormone and retinoid receptors using multiple NMR methods including methyl chemical shifts, coupling constants, and methyl order parameters. From all NMR measures, the aliphatic side chains in the hydrophobic core are slightly more dynamic in the free protein than in the complex, but have mobility comparable to the hydrophobic cores of average folded proteins. Urea titration monitored by NMR reveals that all parts of the protein, including the side-chain packing in the hydrophobic core, denatures in a single cooperative process. The molten globule characteristics of NCBD are thus restricted to a slowly fluctuating tertiary structure. Consequently, the conformational plasticity of the protein is most likely related to its low overall stability rather than an intrinsically flexible protein structure. The well-defined structure supports a model of molecular recognition dominated by conformational selection, whereas only minor structural adjustments are necessary after the association.

0 Bookmarks
 · 
69 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intrinsically disordered proteins are abundant in the eukaryotic proteome, and they are implicated in a range of different diseases. However, there is a paucity of experimental data on molecular details of the coupled binding and folding of such proteins. Two interacting and relatively well studied disordered protein domains are the activation domain from the p160 transcriptional co-activator ACTR and the nuclear co-activator binding domain (NCBD) of CREB binding protein. We have analyzed the transition state for their coupled binding and folding by protein engineering and kinetic experiments (Φ-value analysis) and found that it involves weak native interactions between the N-terminal helices of ACTR and NCBD, but is otherwise "disordered-like". Most native hydrophobic interactions in the interface between the two domains form later, after the rate-limiting barrier for association. Linear free energy relationships suggest a cooperative formation of native interactions, reminiscent of the nucleation-condensation mechanism in protein folding.
    Scientific Reports 06/2013; 3:2076. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many intrinsically disordered proteins fold upon binding to other macromolecules. The secondary structure present in the well-ordered complex is often formed transiently in the unbound state. The consequence of such transient structure for the binding process is, however, not clear. The activation domain of the activator for thyroid hormone and retinoid receptors (ACTR) is intrinsically disordered and folds upon binding to the nuclear coactivator binding domain (NCBD) of the CREB binding protein. A number of mutants was designed that selectively perturbs the amount of secondary structure in unbound ACTR without interfering with the intermolecular interactions between ACTR and NCBD. Using NMR spectroscopy and fluorescence-monitored stopped-flow kinetic measurements we show that the secondary structure content in helix 1 of ACTR indeed influences the binding kinetics. The results thus support the notion of preformed secondary structure as an important determinant for molecular recognition in intrinsically disordered proteins.
    Angewandte Chemie International Edition 01/2014; · 11.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Close packing of hydrophobic residues in the protein interior is an important determinant of protein stability. Cavities introduced by large to small substitutions are known to destabilize proteins. Conversely, native states of proteins and protein fragments can be stabilized by filling in existing cavities. Molten globules (MGs) were initially used to describe a state of protein which has well-defined secondary structure but little or no tertiary packing. Subsequent studies have shown that MGs do have some degree of native-like topology and specific packing. Wet molten globules (WMGs) with hydrated cores and considerably decreased packing relative to the native state have been studied extensively. Recently there has been renewed interest in identification and characterization of dry molten globules (DMGs). These are slightly expanded forms of the native state which show increased conformational flexibility, native-like main-chain hydrogen bonding and dry interiors. The generality of occurrence of DMGs during protein unfolding and the extent and nature of packing in DMGs remain to be elucidated. Packing interactions in native proteins and MGs can be probed through mutations. Next generation sequencing technologies make it possible to determine relative populations of mutants in a large pool. When this is coupled to phenotypic screens or cell-surface display, it becomes possible to rapidly examine large panels of single-site or multi-site mutants. From such studies, residue specific contributions to protein stability and function can be estimated in a highly parallelized fashion. This complements conventional biophysical methods for characterization of packing in native states and molten globules.
    Current Opinion in Structural Biology 12/2012; · 8.74 Impact Factor

Full-text

Download
1 Download
Available from