Article

Genetic analysis of the promoter region of the GATA4 gene in patients with ventricular septal defects.

Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Jining Medical College Affiliated Hospital, Jining Medical College, Jining, Shandong 272029, China.
Translational research : the journal of laboratory and clinical medicine 05/2012; 159(5):376-82. DOI: 10.1016/j.trsl.2011.10.012
Source: PubMed

ABSTRACT Ventricular septal defects (VSDs) are the most common type of congenital heart diseases (CHDs). To date, the genetic causes for sporadic VSDs remain largely unknown. GATA transcription factor 4 (GATA4) is a zinc-finger transcription factor that is expressed in developing heart and adult cardiomyocytes. Mutations in the coding region of the GATA4 gene have been identified in CHD patients, including VSD. As the GATA4 factor is a dosage-sensitive regulator, we hypothesized that the promoter region variants of the GATA4 gene may be genetic causes of VSD. In this study, we analyzed the promoter region of the GATA4 gene by bidirectional sequencing in 172 VSD patients and 171 healthy controls. The results showed that 5 heterozygous sequence variants (NG_008177:g.4071T>C, NG_008177:g.4148C>A, NG_008177:g.4566C>T, NG_008177:g.4653G>T, and NG_008177:g.4690G>deletion) within the promoter region of the GATA gene were identified in 5 VSD patients, but in none of controls. One heterozygous sequence variant (g.4762C>A) was found only in one control, which may have no functional significance. A functional analysis revealed that the transcriptional activity of variant NG_008177:g.4566C>T was reduced significantly, whereas the transcriptional activities of the variants (NG_008177:g.4071T>C, NG_008177:g.4148C>A, NG_008177:g.4653G>T, and NG_008177:g.4690G>deletion) were increased significantly compared with the wild-type GATA4 gene promoter. As GATA4 is a dosage-sensitive regulator during development, our data suggest that these sequence variants within the promoter region of the GATA4 gene may contribute to the VSD etiology by altering its gene expression. Additional studies in experimental animals will deepen our understanding of the genetic basis of VSD and shed light on designing novel molecular therapies for adult VSD patients carrying these variants.

0 Bookmarks
 · 
116 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NKX2-5 is a transcriptional factor, which plays an important role in heart formation and development. Two genetic variants in the coding region of NKX2-5, 63A>G (rs2277923) and 606G>C (rs3729753), have been investigated in the risk of congenital heart disease (CHD), although with inconsistent results. Thus, a meta-analysis was performed to clarify the associations between the two variants and CHD risk in the Chinese population. Relevant studies were identified by searching PubMed, ISI Web of Science and CNKI databases and by reviewing the reference lists of retrieved articles. Then, the data from eligible studies were combined in an allelic model. A total of 7 and 4 studies were ultimately included for 63A>G and 606G>C, respectively. The results of overall meta-analyses showed that significant association was detected for 63A>G (OR = 1.26, 95% CI = 1.02-1.56, P heterogeneity = 0.009, I (2) = 65.1%), but not for 606G>C (OR = 1.22, 95% CI = 0.75-1.96, P heterogeneity = 0.412, I (2) = 0.0%). Regarding 63A>G variant, positive results were also obtained in the subgroups of atrial septal defect and large-sample-size study. Besides, the sensitivity analysis indicated that significant association was still detected after deletion of the individual studies with positive result and striking heterogeneity. Our results revealed that the 63A>G variant in NKX2-5, but not the 606G>C, may contribute to CHD risk for Chinese.
    PLoS ONE 01/2013; 8(8):e70979. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Congenital heart disease (CHD) is the most common birth defects in humans. The genetic causes for CHD remain largely unknown. T-box transcription factor 1 (TBX1), a dosage-sensitive regulator, plays a critical role in the heart development. Mutations in the coding regions of TBX1 gene have been associated to 22q11 deletion syndrome with cardiac defects and isolated CHD cases, including ventricular septal defect (VSD). To date, TBX1 gene promoter region has not been analyzed and reported in CHD patients. We hypothesized that the sequence variants within TBX1 gene promoter region may change TBX1 levels and mediate CHD development. In this study, the promoter regions of TBX1 gene were genetically and functionally analyzed in 280 VSD patients and 267 healthy controls. Two novel heterozygous variants, g.4353C>T and g.4510A>C, were found in two VSD patients, but in none of controls. The single-nucleotide polymorphism-rs41260844, g.4199T>C, was found more frequent in VSD patients than controls (P < 0.01). Functional analyses revealed that these sequence variants significantly enhanced transcriptional activities of TBX1 gene promoter. Therefore, the sequence variants within TBX1 gene promoter may contribute to the VSD etiology by altering the expression levels of TBX1 gene. Pharmaceutical or genetic manipulation of TBX1 gene expression may provide a novel personalized therapy to prevent and treat late cardiac complications for the adult CHD patients carrying these variants.
    Molecular and Cellular Biochemistry 07/2012; 370(1-2):53-8. · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mortality in patients with congenital heart disease (CHD) is significantly increased even with successful surgeries. The main causes are late cardiac complications, such as heart failure and arrhythmia, probably due to genetic defects. To date, genetic causes for CHD remain largely unknown. NKX2-5 gene encodes a highly conserved homeobox transcription factor, which is essential to the heart development in embryos and cardiac function in adults. Mutations in NKX2-5 gene have been implicated in diverse types of CHD, including ventricular septal defect (VSD). As NKX2-5 is a dosage-sensitive regulator, we have speculated that changed NKX2-5 levels may mediate CHD development by influencing cardiac gene regulatory network. In previous studies, we have analyzed the NKX2-5 gene promoter and a proximal enhancer in VSD patients. In the present study, we further genetically and functionally analyzed an upstream enhancer of the NKX2-5 gene in large cohorts of VSD patients (n=340) and controls (n=347). Two novel heterozygous DNA sequence variants (DSVs), g.17483576C>G and g.17483564C>T, were identified in three VSD patients, but in none of controls. Functionally, these two DSVs significantly decreased the activity of the enhancer (P<0.01). Another novel heterozygous DSV, g.17483557Ins, was found in both VSD patients and controls with similar frequencies (P>0.05). Taken together, our data suggested that the DSVs within the upstream enhancer of the NKX2-5 gene may contribute to a small number of VSD. Therefore, genetic studies of CHD may provide insight into designing novel therapies for adult CHD patients.
    Gene 05/2013; · 2.20 Impact Factor