Article

Prostate apoptosis response 4 (Par-4), a novel substrate of caspase-3 during apoptosis activation.

Molecular and Cellular Biology (Impact Factor: 5.37). 02/2012;
0 Bookmarks
 · 
127 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor protein is a central negative regulator of the PI3K/AKT signaling cascade and suppresses cell survival as well as cell proliferation. PTEN is found to be either inactivated or mutated in various human malignancies. In the present study, we have investigated the regulation of PTEN during cisplatin induced apoptosis in A2780, A270-CP (cisplatin resistant), OVCAR-3 and SKOV3 ovarian cancer cell lines. METHODS: Cells were treated with 10muM of cisplatin for 24h. Transcript and protein levels were analysed by quantitative reverse transcriptase-polymerase chain reaction (qPCR) and western blotting, respectively. Immunofluorescence microscopy was used to assess the intracellular localization of PTEN. Proteasome inhibitor and various caspase inhibitors were used to find the mechanism of PTEN degradation. RESULTS: PTEN protein levels were found to be decreased significantly in A2780 cells; however, there was no change in PTEN protein levels in A2780-CP, OVCAR-3 and SKOV3 cells with cisplatin treatment. The decrease in PTEN protein was accompanied with an increase in the levels of AKT phosphorylation (pAKT) in A2780 cells and a decrease of BCL-2. Cisplatin treatment induced the activation/cleavage of caspase-3, -6, -7, -8, -9 in all cell lines tested in this study except the resistant variant A2780-CP cells. In A2780 cells, restoration of PTEN levels was achieved upon pre-treatment with Z-DEVD-FMK (broad range caspase inhibitor) and not with MG132 (proteasome inhibitor) and by overexpression of BCL-2, suggesting that caspases and BCL-2 are involved in the decrease of PTEN protein levels in A2780 cells. CONCLUSION: The decrease in pro-apoptotic PTEN protein levels and increase in survival factor pAKT in A2780 ovarian cancer cells suggest that cisplatin treatment could further exacerbates drug resistance in A2780 ovarian cancer cells.
    BMC Cancer 05/2013; 13(1):233. · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Prostate apoptosis response-4 (Par-4) is a tumor-suppressor protein that selectively activates and induces apoptosis in cancer cells, but not in normal cells. The cancer specific pro-apoptotic function of Par-4 is encoded in its centrally located SAC (Selective for Apoptosis induction in Cancer cells) domain (amino acids 137--195). The SAC domain itself is capable of nuclear entry, caspase activation, inhibition of NF-kappaB activity, and induction of apoptosis in cancer cells. However, the precise mechanism(s) of how the SAC domain is released from Par-4, in response to apoptotic stimulation, is not well explored. RESULTS: In this study, we demonstrate for the first time that sphingosine (SPH), a member of the sphingolipid family, induces caspase-dependant cleavage of Par-4, leading to the release of SAC domain containing fragment from it. Par-4 is cleaved at the EEPD131G site on incubation with caspase-3 in vitro, and by treating cells with several anti-cancer agents. The caspase-3 mediated cleavage of Par-4 is blocked by addition of the pan-caspase inhibitor z-VAD-fmk, caspase-3 specific inhibitor Ac-DEVD-CHO, and by introduction of alanine substitution for D131 residue. Moreover, suppression of SPH-induced Akt dephosphorylation also abrogated the caspase dependant cleavage of Par-4. CONCLUSION: Evidence provided here shows that Par-4 is cleaved by caspase-3 during SPH-induced apoptosis. Cleavage of Par-4 leads to the generation of SAC domain containing fragment which may possibly be essential and sufficient to induce or augment apoptosis in cancer cells.
    Journal of Molecular Signaling 02/2013; 8(1):2.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PAR-4 is a tumor suppressor protein with a pro-apoptotic function and down-regulation of PAR-4 is seen in a variety of tumors. PHLDA1 gene overexpression has been shown to reduce cell proliferation and induce cell death in a variety of cell types. In this study, 229 cases of oral squamous cell carcinoma (OSCC), arranged in a tissue microarray, were analyzed by immunohistochemistry. PAR-4 expression was predominantly moderate to strong and expression of PHLDA1 was predominantly negative or weak. Cytoplasmic expression of PAR-4 was associated with advanced clinical stage. Expression of PHLDA1 was associated with advanced clinical stage of the tumour. Five-year overall and disease-free survival rates differed significantly between cases that did and cases that did not express PHLDA1, and by multivariate analysis, expression of PHLDA1 and PAR-4 were independent prognostic factors in OSCC patients. Expression of PAR-4 and PHLDA1 is altered in OSCC and might be a valuable prognostic indicator for this disease.
    Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin 06/2013; · 2.68 Impact Factor