Article

Role of the Arylhydrocarbon Receptor (AhR) in the Pathology of Asthma and COPD.

Department of Dermatology, Graduate School of Medical Sciences, Kyushu University School of Medicine, 3-1-1, Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan.
Journal of Allergy 01/2012; 2012:372384. DOI: 10.1155/2012/372384
Source: PubMed

ABSTRACT The dioxins and dioxin-like compounds in cigarette smoke and environmental pollutants modulate immunological responses. These environmental toxicants are known to cause lung cancer but have also recently been implicated in allergic and inflammatory diseases such as bronchitis, asthma, and chronic obstructive pulmonary disease (COPD). In a novel pathway of this response, the activation of a nuclear receptor, arylhydrocarbon receptor (AhR), mediates the effects of these toxins through the arachidonic acid cascade, cell differentiation, cell-cell adhesion interactions, cytokine expression, and mucin production that are implicated in the pathogenesis and exacerbation of asthma/COPD. We have previously reported that human bronchial epithelial cells express AhR, and AhR activation induces mucin production through reactive oxygen species. This review discusses the role of AhR in asthma and COPD, focusing in particular on inflammatory and resident cells in the lung. We describe the important impact that AhR activation may have on the inflammation phase in the pathology of asthma and COPD. In addition, crosstalk of AhR signaling with other ligand-activated transcription factors such as peroxisome proliferator-activated receptors (PPARs) has been well documented.

0 Bookmarks
 · 
129 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic obstructive pulmonary disease (COPD) is a major public health problem and will be one of the leading global causes of mortality over the coming decades. Much of the morbidity, mortality and health care costs of COPD are attributable to acute exacerbations, the commonest causes of which are respiratory infections. Respiratory viruses are frequently detected in COPD exacerbations but direct proof of a causative relationship has been lacking. We have developed a model of COPD exacerbation using experimental rhinovirus infection in COPD patients and this has established a causative relationship between virus infection and exacerbations. In addition it has determined some of the molecular mechanisms linking virus infections to COPD exacerbations and identified potential new therapeutic targets. This new data should stimulate research into the role of antiviral agents as potential treatments for COPD exacerbations. Testing of antiviral agents has been hampered by the lack of a small animal model for rhinovirus infection and experimental rhinovirus infection in healthy volunteers has been used to test treatments for the common cold. Experimental rhinovirus infection in COPD subjects offers the prospect of a model that can be used to evaluate the effects of new treatments for virus-induced COPD exacerbations, and provide essential data that can be used in making decisions regarding large scale clinical trials.
    Antiviral research 12/2013; · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aryl hydrocarbon receptor (AHR), a cytosolic ligand-activated transcription factor, belongs to the member of bHLH/PAS family of heterodimeric transcriptional regulators and is widely expressed in a variety of animal species and humans. Recent animal and human data suggested that AHR is involved in various signaling pathways critical to cell normal homeostasis, which covers multiple aspects of physiology, such as cell proliferation and differentiation, gene regulation, cell motility and migration, inflammation and others. Disregulation of these physiological processes is known to contribute to events such as tumor initiation, promotion, and progression. Increasing epidemiological and experimental animal data provided substantial support for an association between abnormal AHR function and cancer, implicating AHR may be a novel drug-interfering target for cancers. The proposed underlying mechanisms of its actions in cancer involved multiple aspects, (a) inhibiting the functional expression of the key anti-oncogenes (such as p53 and BRCA1), (b) promoting stem cells transforming and angiogenesis, (c) altering cell survival, proliferation and differentiation by influencing the physiologic processes of cell-cycle, apoptosis, cell contact-inhibition, metabolism and remodel of extracellular matrix, and cell-matrix interaction, (d) cross-talking with the signaling pathways of estrogen receptor and inflammation. This review aims to provide a brief overview of recent investigations into the role of AHR and the underlying mechanisms of its actions in cancer, which were explored by the new technologies emerging in recent years.
    Biochimica et Biophysica Acta 05/2013; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous findings suggest that developmental exposures to persistent organochlorine pollutants (POPs) may be detrimental for the development of the immune system in the offspring. Whether these suspected immunoregulatory effects persist beyond early childhood remains unclear. The objective of this study was to evaluate the association between maternal serum concentrations of POPs and the risk of asthma in offspring after 20 years of follow-up. A birth cohort with 965 women was formed in 1988-1989 in Århus, Denmark. Concentrations of six polychlorinated biphenyls (PCBs) (congeners number 118, 138, 153, 156, 170, 180), hexachlorobenzene (HCB), and dichlorodiphenyldichloroethylene (p,p'-DDE) were quantified in maternal serum (n = 872) collected in gestation week 30. Information about offspring use of asthma medications was obtained from the Danish Registry of Medicinal Product Statistics. Maternal serum concentrations of HCB and dioxin-like PCB-118 were positively associated with offspring asthma medication use after 20 years of follow-up (p for trend < 0.05). Compared with subjects in the first tertile of maternal concentration, those in the third tertile of PCB-118 had an adjusted hazard ratio (HR) of 1.90 (95% CI: 1.12, 3.23). For HCB the HR for the third versus the first tertile of maternal concentration was 1.92 (95% CI: 1.15, 3.21). Weak positive associations were also estimated for PCB-156 and the non-dioxin like PCBs (PCB-138, 153, 170, 180). No associations were found for p,p'-DDE. Maternal concentrations of PCB-118 and HCB were associated with increased risk of asthma in offspring followed through 20 years of age.
    Environmental Health Perspectives 10/2013; · 7.26 Impact Factor

Full-text (2 Sources)

View
48 Downloads
Available from
Jun 10, 2014