Article

Polycomb function during oogenesis is required for mouse embryonic development.

Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.
Genes & development (Impact Factor: 12.64). 04/2012; 26(9):920-32. DOI: 10.1101/gad.188094.112
Source: PubMed

ABSTRACT In mammals, totipotent embryos are formed by fusion of highly differentiated gametes. Acquisition of totipotency concurs with chromatin remodeling of parental genomes, changes in the maternal transcriptome and proteome, and zygotic genome activation (ZGA). The inefficiency of reprogramming somatic nuclei in reproductive cloning suggests that intergenerational inheritance of germline chromatin contributes to developmental proficiency after natural conception. Here we show that Ring1 and Rnf2, components of Polycomb-repressive complex 1 (PRC1), serve redundant transcriptional functions during oogenesis that are essential for proper ZGA, replication and cell cycle progression in early embryos, and development beyond the two-cell stage. Exchange of chromosomes between control and Ring1/Rnf2-deficient metaphase II oocytes reveal cytoplasmic and chromosome-based contributions by PRC1 to embryonic development. Our results strongly support a model in which Polycomb acts in the female germline to establish developmental competence for the following generation by silencing differentiation-inducing genes and defining appropriate chromatin states.

0 Followers
 · 
156 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic modifications such as DNA methylation and histone H3 lysine 27 methylation (H3K27me) are repressive marks that silence gene expression. The M phase phosphoprotein (MPP8) associates with proteins involved in both DNA methylation and histone modifications, and therefore, is a potential candidate to mediate crosstalk between repressive epigenetic pathways. Here, by performing immunohistochemical analyses we demonstrate that MPP8 is expressed in the rodent testis, especially in spermatocytes, suggesting a role in spermatogenesis. Interestingly, we found that MPP8 physically interacts with PRC1 (Polycomb Repressive Complex 1) components which are known to possess essential function in testis development by modulating monoubiquitination of Histone H2A (uH2A) and trimethylation of Histone H3 Lysine 27 (H3K27me3) residues. Knockdown analysis of MPP8 in HeLa cells resulted in derepression of a set of genes that are normally expressed in spermatogonia, spermatids and mature sperm, thereby indicating a role for this molecule in silencing testis-related genes in somatic cells. In addition, depletion of MPP8 in murine ES cells specifically induced expression of genes involved in mesoderm differentiation, such as Cdx2 and Brachyury even in the presence of LIF, which implicated that MPP8 might be required to repress differentiation associated genes during early development. Taken together, our results indicate that MPP8 could have a role for silencing genes that are associated with differentiation of the testis and the mesoderm by interacting with epigenetic repressors modules such as the PRC1 complex. Copyright © 2015. Published by Elsevier Inc.
    Biochemical and Biophysical Research Communications 02/2015; DOI:10.1016/j.bbrc.2015.01.122 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gametogenesis is dependent on the expression of germline-specific genes. However, it remains unknown how the germline epigenome is distinctly established from that of somatic lineages. Here we show that genes commonly expressed in somatic lineages and spermatogenesis-progenitor cells undergo repression in a genome-wide manner in late stages of the male germline and identify underlying mechanisms. SCML2, a germline-specific subunit of a Polycomb repressive complex 1 (PRC1), establishes the unique epigenome of the male germline through two distinct antithetical mechanisms. SCML2 works with PRC1 and promotes RNF2-dependent ubiquitination of H2A, thereby marking somatic/progenitor genes on autosomes for repression. Paradoxically, SCML2 also prevents RNF2-dependent ubiquitination of H2A on sex chromosomes during meiosis, thereby enabling unique epigenetic programming of sex chromosomes for male reproduction. Our results reveal divergent mechanisms involving a shared regulator by which the male germline epigenome is distinguished from that of the soma and progenitor cells. Copyright © 2015 Elsevier Inc. All rights reserved.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The different configurations of maternal and paternal chromatin, acquired during oogenesis and spermatogenesis, have to be rearranged after fertilization to form a functional embryonic genome. In the paternal genome, nucleosomal chromatin domains are re-established after the protamine-to-histone exchange. We investigated the formation of constitutive heterochromatin (cHC) in human preimplantation embryos. Our results show that histones carrying canonical cHC modifications are retained in cHC regions of sperm chromatin. These modified histones are transmitted to the oocyte and contribute to the formation of paternal embryonic cHC. Subsequently, the modifications are recognized by the H3K9/HP1 pathway maternal chromatin modifiers and propagated over the embryonic cleavage divisions. These results are in contrast to what has been described for mouse embryos, in which paternal cHC lacks canonical modifications and is initially established by Polycomb group proteins. Our results show intergenerational epigenetic inheritance of the cHC structure in human embryos.
    Nature Communications 12/2014; 5:5868. DOI:10.1038/ncomms6868 · 10.74 Impact Factor

Full-text (2 Sources)

Download
39 Downloads
Available from
May 16, 2014