Bile Exposure Inhibits Expression of Squamous Differentiation Genes in Human Esophageal Epithelial Cells

Department of medicine and pathology, NYU Medical Center, New York, NY, USA.
Annals of surgery (Impact Factor: 7.19). 04/2012; 255(6):1113-20. DOI: 10.1097/SLA.0b013e3182512af9
Source: PubMed

ABSTRACT This study aimed to identify pathways and cellular processes that are modulated by exposure of normal esophageal cells to bile and acid.
Barrett's esophagus most likely develops as a response of esophageal stem cells to the abnormal reflux environment. Although insights into the underlying molecular mechanisms are slowly emerging, much of the metaplastic process remains unknown.
We performed a global analysis of gene expression in normal squamous esophageal cells in response to bile or acid exposure. Differentially expressed genes were classified into major biological functions using pathway analysis and interaction network software. Array data were verified by quantitative PCR and western blot both in vitro and in human esophageal biopsies.
Bile modulated expression of 202 genes, and acid modulated expression of 103 genes. Genes involved in squamous differentiation formed the largest functional group (n = 45) all of which were downregulated by bile exposure. This included genes such as involucrin (IVL), keratinocyte differentiation-associated protein (KRTDAP), grainyhead-like 1 (GRHL1), and desmoglein1 (DSG1) the downregulation of which was confirmed by quantitative PCR and western blot. Bile also caused expression changes in genes involved in cell adhesion, DNA repair, oxidative stress, cell cycle, Wnt signaling, and lipid metabolism. Analysis of human esophageal biopsies demonstrated greatly reduced expression of IVL, KRTDAP, DSG1, and GRHL1 in metaplastic compared to squamous epithelia.
We report for the first time that bile inhibits the squamous differentiation program of esophageal epithelial cells. This, coordinated with induction of genes driving intestinal differentiation, may be required for the development of Barrett's esophagus.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Barrett's metaplasia of the esophagus (BE) is the precursor lesion of esophageal adenocarcinoma (EAC), a deadly disease with a 5-year overall survival of less than 20%. The molecular mechanisms of BE development and its transformation to EAC are poorly understood and current surveillance and treatment strategies are of limited efficacy. Increasing evidence suggests that aberrant signaling through pathways active in the embryological development of the esophagus contributes to BE development and progression to EAC. We discuss the role that the Bone morphogenetic protein, Hedgehog, Wingless-Type MMTV Integration Site Family (WNT) and Retinoic acid signaling pathways play during embryological development of the esophagus and their contribution to BE development and malignant transformation. Modulation of these pathways provides new therapeutic opportunities. By integrating findings in developmental biology with those from translational research and clinical trials, this review provides a platform for future studies aimed at improving current management of BE and EAC.
    Critical Reviews in Oncology/Hematology 05/2014; DOI:10.1016/j.critrevonc.2014.05.002 · 4.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oesophageal adenocarcinoma (OA) incidence is rising and prognosis is poor. Understanding the molecular basis of this malignancy is key to finding new prevention and treatment strategies. Gastroesophageal reflux disease (GORD) is the primary cause of OA, usually managed with acid suppression therapy. However, this often does little to control carcinogenic bile acid reflux. The transcription factor nuclear factor kappa B (NF-κB) plays a key role in the pathogenesis of OA and its activity is associated with a poor response to chemotherapy, making it an attractive therapeutic target. We sought to decipher the role of different bile acids in NF-κB activation in oesophageal cell lines using short, physiologically relevant exposure times. The effect of an acidic or neutral extracellular pH was investigated concurrently, to mimic in vivo conditions associated with or without acid suppression. We found that some bile acids activated NF-κB to a greater extent when combined with acid, whereas others did so in its absence, at neutral pH. The precise composition of an individual's reflux, coupled with whether they are taking acid suppressants may therefore dictate the extent of NF-κB activation in the oesophagus, and hence the likelihood of histological progression and chemotherapy success. Regardless of pH, the kinase IKK was pivotal in mediating reflux induced NF-κB activation. Its importance was confirmed further as its increased activation was associated with histological progression in patient samples. We identified further kinases important in acid or bile induced NF-κB signaling in oesophageal cells, which may provide suitable targets for therapeutic intervention. © 2014 Wiley Periodicals, Inc.
    International Journal of Cancer 06/2014; 136(3). DOI:10.1002/ijc.29029 · 5.01 Impact Factor
  • Source
    Alimentary Pharmacology & Therapeutics 08/2014; 40(3). DOI:10.1111/apt.12847 · 4.55 Impact Factor