Article

Translating basic science insight into public health action for multidrug- and extensively drug-resistant tuberculosis.

Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado, USA.
Respirology (Impact Factor: 3.5). 03/2012; 17(5):772-91. DOI: 10.1111/j.1440-1843.2012.02176.x
Source: PubMed

ABSTRACT Multidrug (MDR)- and extensively drug-resistant (XDR) tuberculosis (TB) impose a heavy toll of human suffering and social costs. Controlling drug-resistant TB is a complex global public health challenge. Basic science advances including elucidation of the genetic basis of resistance have enabled development of new assays that are transforming the diagnosis of MDR-TB. Molecular epidemiological approaches have provided new insights into the natural history of TB with important implications for drug resistance. In the future, progress in understanding Mycobacterium tuberculosis strain-specific human immune responses, integration of systems biology approaches with traditional epidemiology and insight into the biology of mycobacterial persistence have potential to be translated into new tools for diagnosis and treatment of MDR- and XDR-TB. We review recent basic sciences developments that have contributed or may contribute to improved public health response.

0 Bookmarks
 · 
98 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Effective global control of tuberculosis (TB) is increasingly threatened by the convergence of multidrug-resistant TB and the human immunodeficiency virus (HIV) infection. TB/HIV coinfections exert a tremendous burden on the host's immune system, and this has prompted the clinical use of immunomodulators to enhance host defences as an alternative therapeutic strategy. In this study, we modified the clinically used synthetic immunomodulatory pentapeptide, thymopentin (TP-5, RKDVY), with six arginine residues (RR-6, RRRRRR) at the N- and C-termini to obtain the cationic peptides, RR-11 (RKDVYRRRRRR-NH2) and RY-11 (RRRRRRRKDVY-NH2), respectively. The arginine residues conferred anti-mycobacterial activity to TP-5 in the peptides as shown by effective minimum inhibitory concentrations of 125 mg/L and killing efficiencies of >99.99% against both rifampicin-susceptible and -resistant Mycobacterium smegmatis. The immunomodulatory action of the peptides remained unaffected as shown by their ability to stimulate TNF-α production in RAW 264.7 mouse macrophage cells. A distinct change in surface morphology after peptide treatment was observed in scanning electron micrographs, while confocal microscopy and dye leakage studies suggested bacterial membrane disruption by the modified peptides. The modified peptides were non-toxic and did not cause hemolysis of rat red blood cells up to a concentration of 2000 mg/L. Moreover, RY-11 showed synergism with rifampicin and reduced the effective concentration of rifampicin, while preventing the induction of rifampicin resistance. The synthetic peptides may have a potential application in both immunocompetent and immunocompromised TB patients.
    Biomaterials 01/2014; DOI:10.1016/j.biomaterials.2013.12.049 · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The first cases of totally drug-resistant (TDR) tuberculosis (TB) were reported in Italy 10 years ago; more recently cases have also been reported in Iran, India and South Africa. Although there is no consensus on terminology, it is most commonly described as ‘resistance to all first- and second-line drugs used to treat TB’. Mycobacterium tuberculosis (M.tb) acquires drug-resistance mutations in a sequential fashion under suboptimal drug pressure due to monotherapy, inadequate dosing, treatment interruptions and drug interactions. The treatment of TDR-TB includes antibiotics with disputed or minimal effectiveness against M.tb, and the fatality rate is high. Comorbidities such as diabetes and infection with human immunodeficiency virus further impact on TB treatment options and survival rates. Several new drug candidates with novel modes of action are under late-stage clinical evaluation (e.g. delamanid, bedaquiline, SQ109 and sutezolid). ‘Repurposed’ antibiotics have also recently been included in the treatment of extensively drug-resistant TB. However, because of mutations in M.tb, drugs will not provide a cure for TB in the long term. Adjunct TB therapies, including therapeutic vaccines, vitamin supplementation and/or repurposing of drugs targeting biologically and clinically relevant molecular pathways, may achieve better clinical outcomes in combination with standard chemotherapy. Here we review broader perspectives of drug resistance in TB and potential adjunct treatment options.This article is protected by copyright. All rights reserved.
    Journal of Internal Medicine 05/2014; DOI:10.1111/joim.12264 · 5.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuberculosis continues to kill 1·4 million people annually. During the past 5 years, an alarming increase in the number of patients with multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis has been noted, particularly in eastern Europe, Asia, and southern Africa. Treatment outcomes with available treatment regimens for drug-resistant tuberculosis are poor. Although substantial progress in drug development for tuberculosis has been made, scientific progress towards development of interventions for prevention and improvement of drug treatment outcomes have lagged behind. Innovative interventions are therefore needed to combat the growing pandemic of multidrug-resistant and extensively drug-resistant tuberculosis. Novel adjunct treatments are needed to accomplish improved cure rates for multidrug-resistant and extensively drug-resistant tuberculosis. A novel, safe, widely applicable, and more effective vaccine against tuberculosis is also desperately sought to achieve disease control. The quest to develop a universally protective vaccine for tuberculosis continues. So far, research and development of tuberculosis vaccines has resulted in almost 20 candidates at different stages of the clinical trial pipeline. Host-directed therapies are now being developed to refocus the anti-Mycobacterium tuberculosis-directed immune responses towards the host; a strategy that could be especially beneficial for patients with multidrug-resistant tuberculosis or extensively drug-resistant tuberculosis. As we are running short of canonical tuberculosis drugs, more attention should be given to host-directed preventive and therapeutic intervention measures.
    04/2014; 2(4):301-320. DOI:10.1016/S2213-2600(14)70033-5

Preview

Download
0 Downloads