Structural Basis of Membrane Bending by the N-BAR Protein Endophilin

Department of Molecular Biosciences, Northwestern University, 2205 Campus Drive, Evanston, IL 60208, USA.
Cell (Impact Factor: 33.12). 03/2012; 149(1):137-45. DOI: 10.1016/j.cell.2012.01.048
Source: PubMed

ABSTRACT Functioning as key players in cellular regulation of membrane curvature, BAR domain proteins bend bilayers and recruit interaction partners through poorly understood mechanisms. Using electron cryomicroscopy, we present reconstructions of full-length endophilin and its N-terminal N-BAR domain in their membrane-bound state. Endophilin lattices expose large areas of membrane surface and are held together by promiscuous interactions between endophilin's amphipathic N-terminal helices. Coarse-grained molecular dynamics simulations reveal that endophilin lattices are highly dynamic and that the N-terminal helices are required for formation of a stable and regular scaffold. Furthermore, endophilin accommodates different curvatures through a quantized addition or removal of endophilin dimers, which in some cases causes dimerization of endophilin's SH3 domains, suggesting that the spatial presentation of SH3 domains, rather than affinity, governs the recruitment of downstream interaction partners.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR domains can generate extremely stable lipid microdomains by "freezing" phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved role for BAR superfamily proteins in regulating lipid dynamics within membranes. Stable microdomains induced by BAR domain scaffolds and specific lipids can generate phase boundaries and diffusion barriers, which may have profound impacts on diverse cellular processes.
    Cell Reports 09/2013; DOI:10.1016/j.celrep.2013.08.024 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BAR domains can prevent membrane fission through their ability to shield necks of budding vesicles from fission-inducing factors. However, the physiological role of this inhibitory function and its regulation is unknown. Here we identify a checkpoint involving the BAR-domain-containing protein Arfaptin-1 that controls biogenesis of secretory granules at the trans-Golgi network (TGN). We demonstrate that protein kinase D (PKD) phosphorylates Arfaptin-1 at serine 132, which disrupts the ability of Arfaptin-1 to inhibit the activity of ADP ribosylation factor, an important component of the vesicle scission machinery. The physiological significance of this regulatory mechanism is evidenced by loss of glucose-stimulated insulin secretion due to granule scission defects in pancreatic β cells expressing nonphosphorylatable Arfaptin-1. Accordingly, depletion of Arfaptin-1 leads to the generation of small nonfunctional secretory granules. Hence, PKD-mediated Arfaptin-1 phosphorylation is necessary to ensure biogenesis of functional transport carriers at the TGN in regulated secretion.
    Developmental Cell 09/2012; 23(4):756-68. DOI:10.1016/j.devcel.2012.07.019 · 10.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BAR proteins are involved in a variety of membrane remodeling events but how they can mold membranes into different shapes remains poorly understood. Using electron paramagnetic resonance, we find that vesicle binding of the N-BAR protein amphiphysin is predominantly mediated by the shallow insertion of amphipathic N-terminal helices. In contrast, the interaction with tubes involves deeply inserted N-terminal helices together with the concave surface of the BAR domain, which acts as a scaffold. Combined with the observed concentration dependence of tubulation and BAR domain scaffolding, the data indicate that initial membrane deformations and vesicle binding are mediated by insertion of amphipathic helical wedges, while tubulation requires high protein densities at which oligomeric BAR domain scaffolds form. In addition, we identify a pocket of residues on the concave surface of the BAR domain that insert deeply into tube membrane. Interestingly, this pocket harbors a number of disease mutants in the homologous amphiphysin 2. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Structure 03/2015; 23(5). DOI:10.1016/j.str.2015.02.014 · 6.79 Impact Factor


Available from