Triviality problem and high-temperature expansions of higher susceptibilities for the Ising and scalar-field models in four-, five-, and six-dimensional lattices.

Dipartimento di Fisica Universita' di Milano-Bicocca and Istituto Nazionale di Fisica Nucleare Sezione di Milano-Bicocca 3 Piazza della Scienza, I-20126 Milano, Italy.
Physical Review E (Impact Factor: 2.31). 02/2012; 85(2 Pt 1):021105. DOI:10.1103/PhysRevE.85.021105
Source: PubMed

ABSTRACT High-temperature expansions are presently the only viable approach to the numerical calculation of the higher susceptibilities for the spin and the scalar-field models on high-dimensional lattices. The critical amplitudes of these quantities enter into a sequence of universal amplitude ratios that determine the critical equation of state. We have obtained a substantial extension, through order 24, of the high-temperature expansions of the free energy (in presence of a magnetic field) for the Ising models with spin s≥1/2 and for the lattice scalar-field theory with quartic self-interaction on the simple-cubic and the body-centered-cubic lattices in four, five, and six spatial dimensions. A numerical analysis of the higher susceptibilities obtained from these expansions yields results consistent with the widely accepted ideas, based on the renormalization group and the constructive approach to Euclidean quantum field theory, concerning the no-interaction ("triviality") property of the continuum (scaling) limit of spin-s Ising and lattice scalar-field models at and above the upper critical dimensionality.

0 0

Full-text (2 Sources)

1 Download
Available from
Mar 20, 2014