Worldwide variation in human drug-metabolism enzyme genes CYP2B6 and UGT2B7: Implications for HIV/AIDS treatment

Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
Pharmacogenomics (Impact Factor: 3.22). 04/2012; 13(5):555-70. DOI: 10.2217/pgs.11.160
Source: PubMed


Hepatic enzymes, CYP2B6 and UGT2B7 play a major role in the metabolism of the widely used antiretroviral drugs efavirenz, nevirapine and zidovudine. In the present study, we provide a view of UGT2B7 haplotype structure, and quantify the genetic diversity and differentiation at both CYP2B6 and UGT2B7 genes on a worldwide scale.
We genotyped one intronic and three promoter SNPs, and together with three nonsynonymous SNPs, inferred UGT2B7 alleles in north American (n = 326), west African (n = 133) and Papua New Guinean (n = 142) populations. We also included genotype data for five CYP2B6 and six UGT2B7 SNPs from an additional 12 worldwide populations (n = 629) analyzed in the 1000 Genomes Project.
We observed significant differences in certain SNP and allele frequencies of CYP2B6 and UGT2B7 among worldwide populations. Diversity values were higher for UGT2B7 than for CYP2B6, although there was more diversity between populations for CYP2B6. For both genes, most of the genetic variation was observed among individuals within populations, with the Papua New Guinean population showing the highest pairwise differentiation values for CYP2B6, and the Asian and European populations showing higher pairwise differentiation values for UGT2B7.
These new genetic distinctions provide additional insights for investigating differences in antiretroviral pharmacokinetics and therapy outcomes among ethnically and geographically diverse populations.

Download full-text


Available from: Peter A Zimmerman, Oct 07, 2015
50 Reads
  • Source
    • "The CYP2B6*6 haplotype is characterized by the presence of two nonsynonymous variants 516G4T and 785A4G (Thorn et al., 2010). Strong linkage disequilibrium between 516G4T and 785A4G can be seen in many populations, including Africans, Caucasians, Asians and Hispanics (Li et al., 2012; Maimbo et al., 2012; Mehlotra et al., 2007; Swart et al., 2012, 2013). Substantial inter-population differences in the frequency of the 516G4T and 785A4G SNPs have been reported, with higher frequencies seen in African populations. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The CYP450 and UGT enzymes are involved in phase I and phase II metabolism of the majority of clinically prescribed drugs, including the non-nucleoside reverse transcriptase inhibitors, efavirenz and nevirapine, used in the treatment of HIV/AIDS. Variations in the activity of these enzymes due to gene polymorphisms can affect an individual's drug response or may lead to adverse drug reactions. There is an inter-ethnic distribution in the frequency of these polymorphisms, with African populations exhibiting higher genetic diversity compared to other populations. African specific alleles with clinical relevance have also emerged. Given the high prevalence of HIV/AIDS in sub-Saharan Africa, understanding the frequency of pharmacogenetically relevant alleles in populations of African origin, and their impact on efavirenz and nevirapine metabolism, is becoming increasingly critical. This review aims to investigate ethnic variation of CYP2B6, CYP2A6 and UGT2B7, and to understand the pharmacogenetic relevance when comparing frequencies in African populations to other populations worldwide.
    Drug Metabolism Reviews 11/2014; 47(2):1-13. DOI:10.3109/03602532.2014.982864 · 5.36 Impact Factor
  • Source
    • "The activity of an enzyme and the gene expression may be modified by single nucleotide polymorphisms (SNPs) [17]. The CYP2B6 sequence carries high variance [21,22] and up to today at least 29 variants have been described [23]. A majority of the variation in CYP450 activity relates to SNPs in the CYP450 gene locus [21]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Since human CYP2B6 has been identified as the major CYP enzyme involved in the metabolism of 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) and that human 2B6 is a highly polymorphic CYP, with known functional variants, we evaluated if circulating concentrations of a major brominated flame retardant, BDE-47, were related to genetic variation in the CYP2B6 gene in a population sample. Methods In the population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study (men and women all aged 70), 25 single nucleotide polymorphisms (SNPs) in the CYP2B6 gene were genotyped. Circulating concentrations of BDE-47 were analyzed by high-resolution gas chromatography coupled to high-resolution mass spectrometry (HRGC/ HRMS). Results Several SNPs in the CYP2B6 gene were associated with circulating concentrations of BDE-47 (P = 10-4 to 10-9). The investigated SNPs came primarily from two haplotypes, although the correlation between the haplotypes was rather high. Conditional analyses adjusting for the SNP with the strongest association with the exposure (rs2014141) did not provide evidence for independent signals. Conclusion Circulating concentrations of BDE-47 were related to genetic variation in the CYP2B6 gene in an elderly population.
    Environmental Health 05/2014; 13(1):34. DOI:10.1186/1476-069X-13-34 · 3.37 Impact Factor
  • Source
    • "More than 30 amino acid-changing single-nucleotide polymorphisms (SNPs) occur in different combinations and together with additional non-coding variants and many more SNPs not yet assigned to particular haplotypes. The worldwide variations in SNP frequencies have been reviewed recently (Li et al., 2012). Table 1 lists the most important variants in terms of frequency and functional impact and summarizes updated structural, functional , and frequency information for different ethnicities. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytochrome P450 2B6 (CYP2B6) belongs to the minor drug metabolizing P450s in human liver. Expression is highly variable both between individuals and within individuals, owing to non-genetic factors, genetic polymorphisms, inducibility, and irreversible inhibition by many compounds. Drugs metabolized mainly by CYP2B6 include artemisinin, bupropion, cyclophosphamide, efavirenz, ketamine, and methadone. is one of the most polymorphic CYP genes in humans and variants have been shown to affect transcriptional regulation, splicing, mRNA and protein expression, and catalytic activity. Some variants appear to affect several functional levels simultaneously, thus, combined in haplotypes, leading to complex interactions between substrate-dependent and -independent mechanisms. The most common functionally deficient allele is [Q172H, K262R], which occurs at frequencies of 15 to over 60% in different populations. The allele leads to lower expression in liver due to erroneous splicing. Recent investigations suggest that the amino acid changes contribute complex substrate-dependent effects at the activity level, although data from recombinant systems used by different researchers are not well in agreement with each other. Another important variant, [I328T], occurs predominantly in Africans (4-12%) and does not express functional protein. A large number of uncharacterized variants are currently emerging from different ethnicities in the course of the 1000 Genomes Project. The polymorphism is clinically relevant for HIV-infected patients treated with the reverse transcriptase inhibitor efavirenz, but it is increasingly being recognized for other drug substrates. This review summarizes recent advances on the functional and clinical significance of CYP2B6 and its genetic polymorphism, with particular emphasis on the comparison of kinetic data obtained with different substrates for variants expressed in different recombinant expression systems.
    Frontiers in Genetics 03/2013; 4:24. DOI:10.3389/fgene.2013.00024
Show more