Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast

Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
Microbial Cell Factories (Impact Factor: 4.22). 04/2012; 11(1):40. DOI: 10.1186/1475-2859-11-40
Source: PubMed


During the bread-making process, industrial baker's yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress. These baking-associated stresses exert severe injury to yeast cells, mainly due to the generation of reactive oxygen species (ROS), leading to cell death and reduced fermentation ability. Thus, there is a great need for a baker's yeast strain with higher tolerance to baking-associated stresses. Recently, we revealed a novel antioxidative mechanism in a laboratory yeast strain that is involved in stress-induced nitric oxide (NO) synthesis from proline via proline oxidase Put1 and N-acetyltransferase Mpr1. We also found that expression of the proline-feedback inhibition-less sensitive mutant γ-glutamyl kinase (Pro1-I150T) and the thermostable mutant Mpr1-F65L resulted in an enhanced fermentation ability of baker's yeast in bread dough after freeze-thaw stress and air-drying stress, respectively. However, baker's yeast strains with high fermentation ability under multiple baking-associated stresses have not yet been developed.
We constructed a self-cloned diploid baker's yeast strain with enhanced proline and NO synthesis by expressing Pro1-I150T and Mpr1-F65L in the presence of functional Put1. The engineered strain increased the intracellular NO level in response to air-drying stress, and the strain was tolerant not only to oxidative stress but also to both air-drying and freeze-thaw stresses probably due to the reduced intracellular ROS level. We also showed that the resultant strain retained higher leavening activity in bread dough after air-drying and freeze-thaw stress than that of the wild-type strain. On the other hand, enhanced stress tolerance and fermentation ability did not occur in the put1-deficient strain. This result suggests that NO is synthesized in baker's yeast from proline in response to oxidative stresses that induce ROS generation and that increased NO plays an important role in baking-associated stress tolerance.
In this work, we clarified the importance of Put1- and Mpr1-mediated NO generation from proline to the baking-associated stress tolerance in industrial baker's yeast. We also demonstrated that baker's yeast that enhances the proline and NO synthetic pathway by expressing the Pro1-I150T and Mpr1-F65L variants showed improved fermentation ability under multiple baking-associated stress conditions. From a biotechnological perspective, the enhancement of proline and NO synthesis could be promising for breeding novel baker's yeast strains.

7 Reads
  • Source
    • "It would be interesting to investigate a gal4,put3 double deletion and assess for weak acid sensitivity. Previous work has shown that yeast strains with higher intracellular proline concentrations are osmotically and oxidatively tolerant (Sasano et al. 2012a, b). It was observed that these strains were weak acid tolerant when compared with BY4741; these strains displayed no increased tolerance to other inhibitory compounds. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Fermentation of sugars released from lignocellulosic biomass (LCMs) is a sustainable option for the production of bioethanol. LCMs release fermentable hexose sugars and the currently non-fermentable pentose sugars; ethanol yield from lignocellulosic residues is dependent on the efficient conversion of available sugars to ethanol, a side-product of the process is acetic acid production. Presence of acetic acid reduced metabolic output and growth when compared with controls; however, it was observed that incubation with proline had a protective effect, which was proline specific and concentration dependent; the protective effect did not extend to furan or phenolic stressed yeast cells. Proline accumulating strains displayed tolerance to acetic acid when compared with background strains, whereas, strains with a compromised proline metabolism displayed sensitivity. Sensitivity to weak acids appears to be reduced with the addition of proline; proline is an imino acid freely available as a nitrogen source in the aerobic phase of fermentations. Yeast strains with higher intracellular proline concentrations would be desirable for industrial bioethanol fermentations.
    Antonie van Leeuwenhoek 02/2014; 105(4). DOI:10.1007/s10482-014-0118-3 · 1.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Yeasts rarely encounter ideal physiological conditions during their industrial life span; therefore, their ability to adapt to changing conditions determines their usefulness and applicability. This is especially true for baking strains of Saccharomyces cerevisiae. The success of this yeast in the ancient art of bread making is based on its capacity to rapidly transform carbohydrates into CO rather than its unusual resistance to environmental stresses. Moreover, baker's yeast must exhibit efficient respiratory metabolism during yeast manufacturing, which determines biomass yield. However, optimal growth conditions often have negative consequences in other commercially important aspects, such as fermentative power or stress tolerance. This article reviews the genetic and physiological characteristics of baking yeast strains, emphasizing the activation of regulatory mechanisms in response to carbon source and stress signaling and their importance in defining targets for strain selection and improvement.
    Review of Food Science and Technology 02/2013; 4(1):191-214. DOI:10.1146/annurev-food-030212-182609 · 6.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During the bread-making process, yeast cells are exposed to many types of baking-associated stress. There is thus a demand within the baking industry for yeast strains with high fermentation abilities under these stress conditions. The POG1 gene, encoding a putative transcription factor involved in cell cycle regulation, is a multicopy suppressor of the yeast Saccharomyces cerevisiae E3 ubiquitin ligase Rsp5 mutant. The pog1 mutant is sensitive to various stresses. Our results suggested that the POG1 gene is involved in stress tolerance in yeast cells. In this study, we showed that overexpression of the POG1 gene in baker's yeast conferred increased fermentation ability in high-sucrose-containing dough, which is used for sweet dough baking. Furthermore, deletion of the POG1 gene drastically increased the fermentation ability in bread dough after freeze-thaw stress, which would be a useful characteristic for frozen dough baking. Thus, the engineering of yeast strains to control the POG1 gene expression level would be a novel method for molecular breeding of baker's yeast.
    International journal of food microbiology 05/2013; 165(3):241-245. DOI:10.1016/j.ijfoodmicro.2013.05.015 · 3.08 Impact Factor
Show more

Preview (2 Sources)

7 Reads
Available from