Article

Predict mycobacterial proteins subcellular locations by incorporating pseudo-average chemical shift into the general form of Chou's pseudo amino acid composition.

Department of Physics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.
Journal of Theoretical Biology (Impact Factor: 2.35). 03/2012; 304:88-95. DOI: 10.1016/j.jtbi.2012.03.017
Source: PubMed

ABSTRACT Mycobacterium tuberculosis (MTB) is a pathogenic bacterial species in the genus Mycobacterium and the causative agent of most cases of tuberculosis (Berman et al., 2000). Knowledge of the localization of Mycobacterial protein may help unravel the normal function of this protein. Automated prediction of Mycobacterial protein subcellular localization is an important tool for genome annotation and drug discovery. In this work, a benchmark data set with 638 non-redundant mycobacterial proteins is constructed and an approach for predicting Mycobacterium subcellular localization is proposed by combining amino acid composition, dipeptide composition, reduced physicochemical property, evolutionary information, pseudo-average chemical shift. The overall prediction accuracy is 87.77% for Mycobacterial subcellular localizations and 85.03% for three membrane protein types in Integral membranes using the algorithm of increment of diversity combined with support vector machine. The performance of pseudo-average chemical shift is excellent. In order to check the performance of our method, the data set constructed by Rashid was also predicted and the accuracy of 98.12% was obtained. This indicates that our approach was better than other existing methods in literature.

0 Bookmarks
 · 
112 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Meiosis and recombination are the two opposite aspects that coexist in a DNA system. As a driving force for evolution by generating natural genetic variations, meiotic recombination plays a very important role in the formation of eggs and sperm. Interestingly, the recombination does not occur randomly across a genome, but with higher probability in some genomic regions called "hotspots", while with lower probability in so-called "coldspots". With the ever-increasing amount of genome sequence data in the postgenomic era, computational methods for effectively identifying the hotspots and coldspots have become urgent as they can timely provide us with useful insights into the mechanism of meiotic recombination and the process of genome evolution as well. To meet the need, we developed a new predictor called "iRSpot-TNCPseAAC", in which a DNA sample was formulated by combining its trinucleotide composition (TNC) and the pseudo amino acid components (PseAAC) of the protein translated from the DNA sample according to its genetic codes. The former was used to incorporate its local or short-rage sequence order information; while the latter, its global and long-range one. Compared with the best existing predictor in this area, iRSpot-TNCPseAAC achieved higher rates in accuracy, Mathew's correlation coefficient, and sensitivity, indicating that the new predictor may become a useful tool for identifying the recombination hotspots and coldspots, or, at least, become a complementary tool to the existing methods. It has not escaped our notice that the aforementioned novel approach to incorporate the DNA sequence order information into a discrete model may also be used for many other genome analysis problems. The web-server for iRSpot-TNCPseAAC is available at http://www.jci-bioinfo.cn/iRSpot-TNCPseAAC. Furthermore, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the current web server to obtain their desired result without the need to follow the complicated mathematical equations.
    International Journal of Molecular Sciences 01/2014; 15(2):1746-66. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Predicting membrane protein type is a meaningful task because this kind of information is very useful to explain the function of membrane proteins. Due to the explosion of new protein sequences discovered, it is highly desired to develop efficient computation tools for quickly and accurately predicting the membrane type for a given protein sequence. Even though several membrane predictors have been developed, they can only deal with the membrane proteins which belong to the single membrane type. The fact is that there are membrane proteins belonging to two or more than two types. To solve this problem, a system for predicting membrane protein sequences with single or multiple types is proposed. Pseudo-amino acid composition, which has proven to be a very efficient tool in representing protein sequences, and a multilabel KNN algorithm are used to compose this prediction engine. The results of this initial study are encouraging.
    Journal of Membrane Biology 04/2013; · 2.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Post-translational modification (PTM) is the chemical modification of a protein after its translation and one of the later steps in protein biosynthesis for many proteins. It plays an important role which modifies the end product of gene expression and contributes to biological processes and diseased conditions. However, the experimental methods for identifying PTM sites are both costly and time-consuming. Hence computational methods are highly desired. In this work, a novel encoding method PSPM (position-specific propensity matrices) is developed. Then a support vector machine (SVM) with the kernel matrix computed by PSPM is applied to predict the PTM sites. The experimental results indicate that the performance of new method is better or comparable with the existing methods. Therefore, the new method is a useful computational resource for the identification of PTM sites. A unified standalone software PTMPred is developed. It can be used to predict all types of PTM sites if the user provides the training datasets. The software can be freely downloaded from http://www.aporc.org/doc/wiki/PTMPred.
    Journal of Theoretical Biology 11/2013; · 2.35 Impact Factor

Full-text

View
59 Downloads
Available from
Jun 2, 2014