Article

NUP-1 Is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions.

Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
PLoS Biology (Impact Factor: 12.69). 03/2012; 10(3):e1001287. DOI: 10.1371/journal.pbio.1001287
Source: PubMed

ABSTRACT A unifying feature of eukaryotic nuclear organization is genome segregation into transcriptionally active euchromatin and transcriptionally repressed heterochromatin. In metazoa, lamin proteins preserve nuclear integrity and higher order heterochromatin organization at the nuclear periphery, but no non-metazoan lamin orthologues have been identified, despite the likely presence of nucleoskeletal elements in many lineages. This suggests a metazoan-specific origin for lamins, and therefore that distinct protein elements must compose the nucleoskeleton in other lineages. The trypanosomatids are highly divergent organisms and possess well-documented but remarkably distinct mechanisms for control of gene expression, including polycistronic transcription and trans-splicing. NUP-1 is a large protein localizing to the nuclear periphery of Trypanosoma brucei and a candidate nucleoskeletal component. We sought to determine if NUP-1 mediates heterochromatin organization and gene regulation at the nuclear periphery by examining the influence of NUP-1 knockdown on morphology, chromatin positioning, and transcription. We demonstrate that NUP-1 is essential and part of a stable network at the inner face of the trypanosome nuclear envelope, since knockdown cells have abnormally shaped nuclei with compromised structural integrity. NUP-1 knockdown also disrupts organization of nuclear pore complexes and chromosomes. Most significantly, we find that NUP-1 is required to maintain the silenced state of developmentally regulated genes at the nuclear periphery; NUP-1 knockdown results in highly specific mis-regulation of telomere-proximal silenced variant surface glycoprotein (VSG) expression sites and procyclin loci, indicating a disruption to normal chromatin organization essential to life-cycle progression. Further, NUP-1 depletion leads to increased VSG switching and therefore appears to have a role in control of antigenic variation. Thus, analogous to vertebrate lamins, NUP-1 is a major component of the nucleoskeleton with key roles in organization of the nuclear periphery, heterochromatin, and epigenetic control of developmentally regulated loci.

0 Bookmarks
 · 
141 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nucleus represents a major evolutionary transition. As a consequence of separating translation from transcription many new functions arose, which likely contributed to the remarkable success of eukaryotic cells. Here we will consider what has recently emerged on the evolutionary histories of several key aspects of nuclear biology; the nuclear pore complex, the lamina, centrosomes and evidence for prokaryotic origins of relevant players.
    Current opinion in cell biology 02/2014; 28C:8-15. · 14.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nuclear pore complex (NPC) has dual roles in nucleocytoplasmic transport and chromatin organisation. In many eukaryotes the coiled-coil Mlp/Tpr proteins of the NPC nuclear basket have specific functions in interactions with chromatin and defining specialised regions of active transcription, while Mlp2 associates with the mitotic spindle/NPC in a cell cycle-dependent manner. We previously identified two putative Mlp-related proteins in African trypanosomes, TbNup110 and TbNup92, the latter of which associates with the spindle. We now provide evidence for independent ancestry for TbNup92/TbNup110 and Mlp/Tpr proteins. However, TbNup92 is required for correct chromosome segregation, with knockout cells exhibiting microaneuploidy and lowered fidelity telomere segregation. Further, TbNup92 is intimately associated with the mitotic spindle and spindle anchor site, but apparently has minimal roles in control of gene transcription, indicating that TbNup92 lacks major barrier activity. TbNup92 therefore acts as a functional analog of Mlp/Tpr proteins, and together with the lamina analog NUP-1, represents a cohort of novel proteins operating at the nuclear periphery of trypanosomes, uncovering complex evolutionary trajectories for the NPC and nuclear lamina.
    Molecular biology of the cell 03/2014; · 5.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: African trypanosomes survive the immune defense of their hosts by regularly changing their antigenic coat made of variant surface glycoprotein (VSG). The Trypanosoma brucei genome contains more than 1,000 VSG genes. To be expressed, a given VSG gene must be located in one of 15 telomeric regions termed "VSG expression sites" (ESs), each of which contains a polycistronic transcription unit that includes ES-associated genes. Only one ES is fully active at a time, so only one VSG gene is transcribed per cell. Although this monoallelic expression is controlled at the transcriptional level, the precise molecular mechanism for this control is not understood. Here we report that in single cells transcription is initiated on several ESs simultaneously, indicating that the monoallelic control is not determined only at transcription initiation, but also at further control steps such as transcription elongation or RNA processing.
    Proceedings of the National Academy of Sciences of the United States of America. 06/2014;

Full-text (2 Sources)

View
71 Downloads
Available from
Jun 3, 2014