Article

Structures of KIX domain of CBP in complex with two FOXO3a transactivation domains reveal promiscuity and plasticity in coactivator recruitment.

Ontario Cancer Institute, University Health Network, Toronto, ON, Canada M5G 1L7.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 04/2012; 109(16):6078-83. DOI: 10.1073/pnas.1119073109
Source: PubMed

ABSTRACT Forkhead box class O 3a (FOXO3a) is a transcription factor and tumor suppressor linked to longevity that determines cell fate through activating transcription of cell differentiation, survival, and apoptotic genes. Recruitment of the coactivator CBP/p300 is a crucial step in transcription, and we revealed that in addition to conserved region 3 (CR3) of FOXO3a, the C-terminal segment of CR2 (CR2C) binds CBP/p300 and contributes to transcriptional activity. CR2C and CR3 of FOXO3a interact with the KIX domain of CBP/p300 at both "MLL" and "c-Myb" binding sites simultaneously. A FOXO3a CR2C-CR3 peptide in complex with KIX exists in equilibrium between two equally populated conformational states, one of which has CR2C bound to the MLL site and CR3 bound to the c-Myb site, whereas in the other, CR2C and CR3 bind the c-Myb and MLL sites, respectively. This promiscuous interaction between FOXO3a and CBP/p300 is further supported by additional binding sites on CBP/p300, namely, the TAZ1 and TAZ2 domains. In functional studies, our structure-guided mutagenesis showed that both CR2C and CR3 are involved in the activation of certain endogenous FOXO3a target genes. Further, phosphorylation of S626, a known AMP-dependent protein kinase target in CR3, increased affinity for CBP/p300 and the phosphomimetic mutation enhanced transactivation of luciferase. These findings underscore the significance of promiscuous multivalent interactions and posttranslational modification in the recruitment of transcriptional coactivators, which may allow transcription factors to adapt to various gene-specific genomic and chromatin structures and respond to cell signals.

Download full-text

Full-text

Available from: Feng Wang, Jun 28, 2015
0 Followers
 · 
128 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A large body of evidence suggests that a considerable fraction of the human proteome may be at least in part intrinsically unstructured. While disordered, intrinsically unstructured proteins are nevertheless functional and mediate many interactions. Despite their significant role in regulation, however, little is known about the molecular mechanism whereby intrinsically unstructured proteins exert their function. This basic problem is critical to establish the role, if any, of disorder in cellular systems. Here we present kinetic experiments supporting a mechanism of binding-induced-folding when the KIX domain of the CREB-binding protein binds the transactivation domain of c-Myb, an intrinsically unstructured domain. The high-resolution structure of this physiologically important complex was previously determined by NMR spectroscopy. Our data reveal that c-Myb recognizes KIX by first forming a weak encounter complex in a disordered conformation, which is subsequently locked-in by a folding step, i.e. binding precedes folding. On the basis of the pH dependence of the observed combination and dissociation rate constants we propose a plausible mechanism for complex formation. The implications of our results in the light of previous work on intrinsically unstructured systems are discussed.
    Biochemical and Biophysical Research Communications 09/2012; 428(2). DOI:10.1016/j.bbrc.2012.09.112 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In eukaryotic cells, gene transcription is regulated by sequence-specific DNA-binding transcription factors that recognize promoter and enhancer elements near the transcriptional start site. Some coactivators promote transcription by connecting transcription factors to the basal transcriptional machinery. The highly conserved coactivators CREB-binding protein (CBP) and its paralog, E1A-binding protein (p300), each have four separate transactivation domains (TADs) that interact with the TADs of a number of DNA-binding transcription activators as well as general transcription factors (GTFs), thus mediating recruitment of basal transcription machinery to the promoter. Most promoters comprise multiple activator-binding sites, and many activators contain tandem TADs, thus multivalent interactions may stabilize CBP/p300 at the promoter, and intrinsically disordered regions in CBP/p300 and many activators may confer adaptability to these multivalent complexes. CBP/p300 contains a catalytic histone acetyltransferase (HAT) domain, which remodels chromatin to 'relax' its superstructure and enables transcription of proximal genes. The HAT activity of CBP/p300 also acetylates some transcription factors (e.g., p53), hence modulating the function of key transcriptional regulators. Through these numerous interactions, CBP/p300 has been implicated in complex physiological and pathological processes, and, in response to different signals, can drive cells towards proliferation or apoptosis. Dysregulation of the transcriptional and epigenetic functions of CBP/p300 is associated with leukemia and other types of cancer, thus it has been recognized as a potential anti-cancer drug target. In this review, we focus on recent exciting findings in the structural mechanisms of CBP/p300 involving multivalent and dynamic interactions with binding partners, which may pave new avenues for anti-cancer drug development.
    Cellular and Molecular Life Sciences CMLS 01/2013; 70(21). DOI:10.1007/s00018-012-1254-4 · 5.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Forkhead box O (FOXO) transcription factors are involved in the regulation of the cell cycle, apoptosis and metabolism. In model organisms, FOXO activity also affects stem cell maintenance and lifespan as well as age-related diseases, such as cancer and diabetes. Multiple upstream pathways regulate FOXO activity through post-translational modifications and nuclear-cytoplasmic shuttling of both FOXO and its regulators. The diversity of this upstream regulation and the downstream effects of FOXOs suggest that they function as homeostasis regulators to maintain tissue homeostasis over time and coordinate a response to environmental changes, including growth factor deprivation, metabolic stress (starvation) and oxidative stress.
    Nature Reviews Molecular Cell Biology 01/2013; 14(2). DOI:10.1038/nrm3507 · 36.46 Impact Factor