Article

Prenatal immune challenge in rats: Altered responses to dopaminergic and glutamatergic agents, prepulse inhibition of acoustic startle, and reduced route-based learning as a function of maternal body weight gain after prenatal exposure to poly IC

Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA.
Synapse (Impact Factor: 2.43). 08/2012; 66(8):725-37. DOI: 10.1002/syn.21561
Source: PubMed

ABSTRACT Prenatal maternal immune activation has been used to test the neurodevelopmental hypothesis of schizophrenia. Most of the data are in mouse models; far less is available for rats. We previously showed that maternal weight change in response to the immune activator polyinosinic-polycytidylic acid (Poly IC) in rats differentially affects offspring. Therefore, we treated gravid Harlan Sprague-Dawley rats i.p. on embryonic day 14 with 8 mg/kg of Poly IC or Saline. The Poly IC group was divided into those that lost or gained the least weight, Poly IC (L), versus those that gained the most weight, Poly IC (H), following treatment. The study design controlled for litter size, litter sampling, sex distribution, and test experience. We found no effects of Poly IC on elevated zero maze, open-field activity, object burying, light-dark test, straight channel swimming, Morris water maze spatial acquisition, reversal, or shift navigation or spatial working or reference memory, or conditioned contextual or cued fear or latent inhibition. The Poly IC (H) group showed a significant decrease in the rate of route-based learning when visible cues were unavailable in the Cincinnati water maze and reduced prepulse inhibition of acoustic startle in females, but not males. The Poly IC (L) group exhibited altered responses to acute pharmacological challenges: exaggerated hyperactivity in response to (+)-amphetamine and an attenuated hyperactivity in response to MK-801. This model did not exhibit the cognitive, or latent inhibition deficits reported in Poly IC-treated rats but showed changes in response to drugs acting on neurotransmitter systems implicated in the pathophysiology of schizophrenia (dopaminergic hyperfunction and glutamatergic hypofunction).

0 Bookmarks
 · 
131 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maternal immune activation (MIA) during pregnancy is an environmental risk factor for psychiatric illnesses such as schizophrenia and autism in the offspring. Hence, changes in an array of behaviors, including behavioral flexibility, consistent with altered functioning of cortico-limbic circuits have been reported in rodent models of MIA. Surprisingly, previous studies have not examined the effect of MIA on the extinction of fear conditioning which depends on cortico-limbic circuits. Thus, we tested the effects of treating pregnant Long Evans rats with the viral mimetic polyI:C (gestational day 15; 4 mg/kg; i.v.) on fear conditioning and extinction in the male offspring using two different tasks. In the first experiment, we observed no effect of polyI:C treatment on the acquisition or extinction of a classically conditioned fear memory in a non-discriminative auditory cue paradigm. However, polyI:C-treated offspring did increase contextual freezing during the recall of fear extinction in this non-discriminative paradigm. The second experiment utilized a recently developed task to explicitly test the ability of rats to discriminate among cues signifying fear, reward, and safety; a task that requires behavioral flexibility. To our surprise, polyI:C-treated rats acquired the task in a manner similar to saline-treated rats. However, upon subsequent extinction training, they showed significantly faster extinction of the freezing response to the fear cue. In contrast, during the extinction recall test, polyI:C-treated offspring showed enhanced freezing behavior before and after presentation of the fear cue, suggesting an impairment in their ability to regulate fear behavior. These behavioral results are integrated into the literature suggesting impairments in cortico-limbic brain function in the offspring of rats treated with polyI:C during pregnancy.
    Frontiers in Behavioral Neuroscience 05/2014; 8:168. DOI:10.3389/fnbeh.2014.00168 · 4.16 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is a highly disabling psychiatric disorder with a proposed neurodevelopmental basis. One mechanism through which genetic and environmental risk factors might act is by triggering persistent brain inflammation, as evidenced by long-lasting neuro-immunological disturbances in patients. Our goal was to investigate whether microglia activation is a neurobiological correlate to the altered behaviour in the maternal immune activation (MIA) model, a well-validated animal model with relevance to schizophrenia. A recent observation in the MIA model is the differential maternal body weight response to the immune stimulus, correlated with a different behavioural outcome in the offspring. Although it is generally assumed that the differences in maternal weight response reflect differences in cytokine response, this has not been investigated so far. Our aim was to investigate whether i) the maternal weight response to MIA reflects differences in the maternal cytokine response, ii) the differential behavioural phenotype of the offspring extends to depressive symptoms such as anhedonia and iii) there are changes in chronic microglia activation dependent on the behavioural phenotype.
    Brain Behavior and Immunity 06/2014; 42. DOI:10.1016/j.bbi.2014.06.013 · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Schizophrenia is a highly disabling psychiatric disorder with a proposed neurodevelopmental basis. One mechanism through which genetic and environmental risk factors might act is by triggering persistent brain inflammation, as evidenced by long-lasting neuro-immunological disturbances in patients. Our goal was to investigate whether microglia activation is a neurobiological correlate to the altered behaviour in the maternal immune activation (MIA) model, a well-validated animal model with relevance to schizophrenia. A recent observation in the MIA model is the differential maternal body weight response to the immune stimulus, correlated with a different behavioural outcome in the offspring. Although it is generally assumed that the differences in maternal weight response reflect differences in cytokine response, this has not been investigated so far. Our aim was to investigate whether i) the maternal weight response to MIA reflects differences in the maternal cytokine response, ii) the differential behavioural phenotype of the offspring extends to depressive symptoms such as anhedonia and iii) there are changes in chronic microglia activation dependent on the behavioural phenotype. Methods Based on a dose-response study, MIA was induced in pregnant rats by injecting 4mg/kg Poly I:C at gestational day 15. Serum samples were collected to assess the amount of TNF-α in the maternal blood following MIA. MIA offspring were divided into weight loss (WL; n=14) and weight gain (WG; n=10) groups, depending on the maternal body weight response to Poly I:C. Adult offspring were behaviourally phenotyped for prepulse inhibition, locomotor activity with and without amphetamine and MK-801 challenge, and sucrose preference. Finally, microglia activation was scored on CD11b- and Iba1-immunohistochemically stained sections. Results Pregnant dams that lost weight following MIA showed increased levels of TNF-α compared to controls, unlike dams that gained weight following MIA. Poly I:C WL offspring showed the most severe behavioural outcome. Poly I:C WG offspring, on the other hand, did not show clear behavioural deficits. Most interestingly a reduced sucrose preference indicative of anhedonia was found in Poly I:C WL but not Poly I:C WG offspring compared to controls. Finally, there were no significant differences in microglia activation scores between any of the investigated groups. Conclusions The individual maternal immune response to MIA is an important determinant of the behavioural outcome in offspring, including negative symptoms such as anhedonia. We failed to find any significant difference in the level of microglia activation between Poly I:C WL, Poly I:C WG and control offspring.
    Brain Behavior and Immunity 01/2014; · 6.13 Impact Factor