Article

Laser-capture microdissection and transcriptional profiling of the dorsomedial nucleus of the hypothalamus

Department of Internal Medicine and Department of Pharmacology, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077.
The Journal of Comparative Neurology (Impact Factor: 3.51). 11/2012; 520(16):3617-32. DOI: 10.1002/cne.23116
Source: PubMed

ABSTRACT Identifying neuronal molecular markers with restricted patterns of expression is a crucial step in dissecting the numerous pathways and functions of the brain. While the dorsomedial nucleus of the hypothalamus (DMH) has been implicated in a host of physiological processes, current functional studies have been limited by the lack of molecular markers specific for DMH. Identification of such markers would facilitate the development of mouse models with DMH-specific genetic manipulations. Here we used a combination of laser-capture microdissection (LCM) and gene expression profiling to identify genes that are highly expressed within the DMH relative to adjacent hypothalamic regions. Six of the most highly expressed of these genes, Gpr50, 4930511J11Rik, Pcsk5, Grp, Sulf1, and Rorβ, were further characterized by real-time polymerase chain reaction (PCR) analysis and in situ hybridization histochemistry. The genes identified in this article will provide the basis for future gene-targeted approaches for studying DMH function. J. Comp. Neurol. 520:3617-3632, 2012. © 2012 Wiley Periodicals, Inc.

Download full-text

Full-text

Available from: Syann Lee, Sep 09, 2014
1 Follower
 · 
204 Views
  • Source
    • "Both VM and DM are heterogeneous entities composed of different cell types whose identity and spatial distribution have not been fully resolved yet. Various chemo-and genoarchitectonic mappings suggest in both cases a fundamental organization into compact core portions and surrounding dispersed shell domains (Milhouse 1973; Chou et al. 2001; Choi et al. 2005; Segal et al. 2005; McClellan et al. 2006; Lee et al. 2012; Puelles et al. 2012). The latter authors noted that the VM and DM core domains are nearly completely excitatory (glutamatergic), whereas their shell regions, VMs, DMs, contain more dispersed inhibitory GABAergic neurons intermixed with glutamatergic ones (Puelles et al. 2012; their Figs. "
    [Show abstract] [Hide abstract]
    ABSTRACT: According to the updated prosomeric model, the hypothalamus is subdivided rostrocaudally into terminal and peduncular parts, and dorsoventrally into alar, basal, and floor longitudinal zones. In this context, we examined the ontogeny of peptidergic cell populations expressing Crh, Trh, and Ghrh mRNAs in the mouse hypothalamus, comparing their distribution relative to the major progenitor domains characterized by molecular markers such as Otp, Sim1, Dlx5, Arx, Gsh1, and Nkx2.1. All three neuronal types originate mainly in the peduncular paraventricular domain and less importantly at the terminal paraventricular domain; both are characteristic alar Otp/ Sim1-positive areas. Trh and Ghrh cells appeared specifically at the ventral subdomain of the cited areas after E10.5. Additional Ghrh cells emerged separately at the tuberal arcuate area, characterized by Nkx2.1 expression. Crh-positive cells emerged instead in the central part of the peduncular paraventricular domain at E13.5 and remained there. In contrast, as development progresses (E13.5– E18.5) many alar Ghrh and Trh cells translocate into the alar subparaventricular area, and often also into underlying basal neighborhoods expressing Nkx2.1 and/or Dlx5, such as the tuberal and retrotuberal areas, becoming partly or totally depleted at the original birth sites. Our data correlate a topologic map of molecularly defined hypothalamic progenitor areas with three types of specific neurons, each with restricted spatial origins and differential migratory behavior during prenatal hypothalamic development. The study may be useful for detailed causal analysis of the respective differential specification mechanisms. The postulated migrations also contribute to our understanding of adult hypothalamic complexity.
    Brain Structure and Function 05/2014; 219(3):1083-1111. DOI:10.1007/s00429-013-0554-2 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The number of obese or overweight humans continues to increase worldwide. Hypertension is a serious disease that often develops in obesity, but it is not clear how obesity increases the risk of hypertension. However, both obesity and hypertension increase the risk of cardiovascular diseases (CVD). In this review, we examine how obesity may increase the risk of developing hypertension. Specifically, we discuss how the adipose-derived hormone leptin influences the sympathetic nervous system (SNS), through actions in the brain to elevate energy expenditure (EE) while also contributing to hypertension in obesity.
    Trends in Neurosciences 01/2013; 36(2). DOI:10.1016/j.tins.2013.01.004 · 12.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dorsomedial nucleus of the hypothalamus (DMH) contributes to the regulation of overall energy homeostasis by modulating energy intake as well as energy expenditure. Despite the importance of the DMH in the control of energy balance, DMH-specific genetic markers or neuronal subtypes are poorly defined. Here we demonstrate the presence of cholinergic neurons in the DMH using genetically modified mice that express enhanced green florescent protein (eGFP) selectively in choline acetyltransferase (Chat)-neurons. Overnight food deprivation increases the activity of DMH cholinergic neurons, as shown by induction of fos protein and a significant shift in the baseline resting membrane potential. DMH cholinergic neurons receive both glutamatergic and GABAergic synaptic input, but the activation of these neurons by an overnight fast is due entirely to decreased inhibitory tone. The decreased inhibition is associated with decreased frequency and amplitude of GABAergic synaptic currents in the cholinergic DMH neurons, while glutamatergic synaptic transmission is not altered. As neither the frequency nor amplitude of miniature GABAergic or glutamatergic postsynaptic currents is affected by overnight food deprivation, the fasting-induced decrease in inhibitory tone to cholinergic neurons is dependent on superthreshold activity of GABAergic inputs. This study reveals that cholinergic neurons in the DMH readily sense the availability of nutrients and respond to overnight fasting via decreased GABAergic inhibitory tone. As such, altered synaptic as well as neuronal activity of DMH cholinergic neurons may play a critical role in the regulation of overall energy homeostasis.
    PLoS ONE 04/2013; 8(4):e60828. DOI:10.1371/journal.pone.0060828 · 3.53 Impact Factor
Show more