Tightening of the ATP-binding sites induces the opening of P2X receptor channels.

Faculté de Pharmacie, Laboratoire de Biophysicochimie des Récepteurs Canaux, UMR 7199 CNRS, Conception et Application de Molécules Bioactives, Université de Strasbourg, Illkirch, France.
The EMBO Journal (Impact Factor: 9.82). 03/2012; 31(9):2134-43. DOI: 10.1038/emboj.2012.75
Source: PubMed

ABSTRACT The opening of ligand-gated ion channels in response to agonist binding is a fundamental process in biology. In ATP-gated P2X receptors, little is known about the molecular events that couple ATP binding to channel opening. In this paper, we identify structural changes of the ATP site accompanying the P2X2 receptor activation by engineering extracellular zinc bridges at putative mobile regions as revealed by normal mode analysis. We provide evidence that tightening of the ATP sites shaped like open 'jaws' induces opening of the P2X ion channel. We show that ATP binding favours jaw tightening, whereas binding of a competitive antagonist prevents gating induced by this movement. Our data reveal the inherent dynamic of the binding jaw, and provide new structural insights into the mechanism of P2X receptor activation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: ATP-gated P2X receptors and acid-sensing ion channels (ASICs) are two distinct ligand-gated ion channels that assemble into trimers. They are involved in many important physiological functions such as pain sensation and are recognized as important therapeutic targets. They have unrelated primary structures and respond to different ligands (ATP and protons), and are thus considered as two different ion channels. As a consequence, comparisons of the biophysical properties and underlying mechanisms have only rarely been made between these two channels. However, the recent determination of their molecular structures by X-ray crystallography has revealed unexpected parallels in the architecture of the two pores, providing a basis for possible functional analogies. In this review, we analyze the structural and functional similarities that are shared by these trimeric ion channels, and outline key unanswered questions that, if addressed experimentally, may help to elucidate how two unrelated ion channels have adopted a similar fold of the pore.
    Journal of molecular biology. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Channel gating in response to extracellular ATP is a fundamental process for the physiological functions of P2X receptors. Here we identify coordinated allosteric changes in the left flipper (LF) and dorsal fin (DF) domains that couple ATP-binding to channel gating. Engineered disulphide crosslinking or zinc bridges between the LF and DF domains that constrain their relative motions significantly influence channel gating of P2X4 receptors, confirming the essential role of these allosteric changes. ATP-binding-induced alterations in interdomain hydrophobic interactions among I208, L217, V291 and the aliphatic chain of K193 correlate well with these coordinated relative movements. Mutations on those four residues lead to impaired or fully abolished channel activations of P2X4 receptors. Our data reveal that ATP-binding-induced altered interdomain hydrophobic interactions and the concomitant coordinated motions of LF and DF domains are allosteric events essential for the channel gating of P2X4 receptors.
    Nature Communications 01/2014; 5:4189. · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The vas deferens is a simple bioassay widely used to study the physiology of sympathetic neurotransmission and the pharmacodynamics of adrenergic drugs. The role of ATP as a sympathetic co-transmitter has gained increasing attention and furthered our understanding of its role in sympathetic reflexes. In addition, new information has emerged on the mechanisms underlying the storage and release of ATP. Both noradrenaline and ATP concur to elicit the tissue smooth muscle contractions following sympathetic reflexes or electrical field stimulation of the sympathetic nerve terminals. ATP and adenosine (its metabolic byproduct) are powerful presynaptic regulators of co-transmitter actions. In addition, neuropeptide Y, the third member of the sympathetic triad, is an endogenous modulator. The peptide plus ATP and/or adenosine play a significant role as sympathetic modulators of transmitter’s release. This review focuses on the physiological principles that govern sympathetic co-transmitter activity, with special interest in defining the motor role of ATP. In addition, we intended to review the recent structural biology findings related to the topology of the P2X1R based on the crystallized P2X4 receptor from Danio rerio, or the crystallized adenosine A2A receptor as a member of the G protein coupled family of receptors as prototype neuro modulators. This review also covers structural elements of ectonucleotidases, since some members are found in the vas deferens neuro-effector junction. The allosteric principles that apply to purinoceptors are also reviewed highlighting concepts derived from receptor theory at the light of the current available structural elements. Finally, we discuss clinical applications of these concepts.
    Autonomic Neuroscience. 01/2014;


Available from
May 21, 2014