Article

Antiangiogenic therapies targeting the vascular endothelia growth factor signaling system.

Royal Melbourne Hospital, Western Hospital, and Ludwig Institute for Cancer Research, Parkville, Victoria, Australia.
Critical reviews in oncogenesis 01/2012; 17(1):51-67. DOI: 10.1615/CritRevOncog.v17.i1.50
Source: PubMed

ABSTRACT Angiogenesis is critical to the growth of human tumors and the development of metastasis. Amongst the many proangiogenic mechanisms identified, the vascular endothelial growth factor (VEGF) signaling pathway has been implicated as the key regulator of tumor neovascularisation. Various therapeutic agents targeting the VEGF pathway have been successfully developed, with many now approved and in routine clinical use. In general, VEGF-mediated angiogenesis can be inhibited by 2 approaches: antibodies directed against VEGF ligands or VEGF receptors (VEGFRs) and tyrosine kinase inhibitors targeting the VEGFRs. Thus far, clinical benefits achieved with VEGF-targeted agents are limited by their modest efficacy and the development of resistance. With no shortage of drugs in development, the lack of well-validated biomarkers to predict for response or resistance to VEGF-directed therapies is now becoming a key factor limiting the further rational development of this class of anticancer agent. This review discusses the biology of VEGF signaling, the clinical efficacy of VEGF-targeting therapies, potential mechanisms of resistance, and emerging predictive biomarkers.

0 Bookmarks
 · 
87 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Angiogenesis plays an essential role in many physiological and pathological processes. Quercetin, a plant pigment and traditional Chinese medicinal herb, is an important flavonoid that has anti-cancer activity. However, the function of quercetin in blood vessel development in vivo and in vitro is still unclear. In this study, we investigated the anti-angiogenic activity of quercetin in zebrafish embryos and in human umbilical vein endothelial cells (HUVECs). Our results showed that quercetin disrupted the formation of intersegmental vessels, the dorsal aorta and the posterior cardinal vein in transgenic zebrafish embryos. In HUVECs, quercetin inhibited cell viability, the expression of vascular endothelial growth factor receptor 2 and tube formation in a dose-dependent manner. In inhibiting angiogenesis, quercetin was found to be involved in suppressing the extracellular signal-regulated kinase signaling pathway in vivo and in vitro. This study has shown that quercetin has potent anti-angiogenic activity and may be a candidate anti-cancer agent for future research.
    European journal of pharmacology 11/2013; · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many studies on the molecular control underlying normal cell behavior and cellular responses to disease stimuli and pharmacological intervention are conducted in single-cell culture systems, while the read-out of cellular engagement in disease and responsiveness to drugs in vivo is often based on overall tissue responses. As the majority of drugs under development aim to specifically interact with molecular targets in subsets of cells in complex tissues, this approach poses a major experimental discrepancy that prevents successful development of new therapeutics. In this review, we address the shortcomings of the use of artificial (single) cell systems and of whole tissue analyses in creating a better understanding of cell engagement in disease and of the true effects of drugs. We focus on microvascular endothelial cells that actively engage in a wide range of physiological and pathological processes. We propose a new strategy in which in vivo molecular control of cells is studied directly in the diseased endothelium instead of at a (far) distance from the site where drugs have to act, thereby accounting for tissue-controlled cell responses. The strategy uses laser microdissection-based enrichment of microvascular endothelium which, when combined with transcriptome and (phospho)proteome analyses, provides a factual view on their status in their complex microenvironment. Combining this with miniaturized sample handling using microfluidic devices enables handling the minute sample input that results from this strategy. The multidisciplinary approach proposed will enable compartmentalized analysis of cell behavior and drug effects in complex tissue to become widely implemented in daily biomedical research and drug development practice.
    Cell and Tissue Research 09/2013; · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antiangiogenic therapies in cancer exert their effects in the context of age-related comorbidities, which affect the entirety of the vascular system. Among those conditions, the impact of atherosclerosis is especially prevalent, but poorly understood, and not reflected in mouse models routinely used for testing antiangiogenic therapeutics. Our earlier work suggested that these obstacles can be overcome with the use of atherosclerosis-prone ApoE-/- mice harbouring syngeneic transplantable Lewis Lung Carcinoma (LLC). Here we report that, sunitinib, the clinically approved, antiangiogenic inhibitor impedes global tumor growth to a greater extent in aged then in young mice. This activity was coupled with changes in the tumor microenvironment, which in aged mice was characterized by pronounced hypoxia, reduction in microvascular density (MVD) and lower pericyte coverage, relative to young controls. We also detected soluble VEGR2 in plasma of sunitinib treated mice. Interestingly, sunitinib modulated tumor infiltration with bone marrow-derived cells (CD45+), recruitment of M2-like macrophages (CD163+) and activation of inflammatory pathways (phospho-STAT3) in a manner that was age-dependent. We suggest that age and atherosclerosis may alter the effects of sunitinib on the tumor microenvironment, and that these considerations may also apply more broadly to other forms of antiangiogenic treatment in cancer.
    Mechanisms of Ageing and Development 07/2014; · 3.51 Impact Factor